Contents

\mathbf{Pr}	Preface to the Revised Edition					
Pre	eface	to the First Edition	vi			
Im	Important Tables					
1	Cry	estalline Structure	1			
	1.1	Bravais Lattice	2			
	1.2	Infinite Lattices and Finite Crystals	5			
	1.3	Bravais Lattices with Cubic Symmetry	•			
	1.4	Coordination Number	10			
	1.5	Primitive Unit Cell	10			
	1.6	Conventional Unit Cell	12			
	1.7	Wigner–Seitz Primitive Cell	13			
	1.8 Crystal Structure: Lattice with a Basis		18			
	1.9	Some Important Examples of Crystal Structures and Lattices with a Basis	17			
		1.9.1 Diamond structure	1'			
		1.9.2 Hexagonal closed-packed structure	18			
		1.9.3 Other close-packing possibilities	20			
		1.9.4 The sodium chloride structure	2			
		1.9.5 The cesium chloride structure	2			
		1.9.6 The zincblende structure	2			
	1.10	Other Aspects of Crystal Lattices	2			
	Prol	olems	20			
2	2 Classification of Bravais Lattices and Crystal Structures		29			
	2.1	The Classification of Bravais Lattices	3			
		2.1.1 The seven crystal systems	3			
		2.1.2 The fourteen Bravais lattices	3			
		2.1.3 Enumeration of the seven crystal systems and fourteen Bravais lattices	3			

ΚV	iii	Contents	Contents	XIX
	2.2 The Crystallographic Point Groups and Space Groups	41		155
	2.2.1 Point-group nomenclature	45	1	157
	2.2.2 The 230 space groups	47	1 1	159
	2.3 Examples Among the Elements	51	o,,	164
	Problems	53	***	169
3	The Reciprocal Lattice	57		173
	3.1 Definition of Reciprocal Lattice	58	7 Electron Levels in a Periodic Potential: General Properties 1	177
	3.2 The Reciprocal Lattice is a Bravais Lattice	59	7.1 The Periodic Potential 1	179
	3.3 Crystal System of Reciprocal Lattice	61	7.2 Bloch's Theorem 1	180
	3.4 First Brillouin Zone	63	7.2.1 First proof of Bloch's theorem 1	181
	3.5 Born-Karman Condition	64	7.2.2 Second proof of Bloch's theorem 1	183
	3.6 Lattice Planes	66	7.3 General Remarks about Bloch's Theorem 1	186
	3.7 Miller Indices of Lattice Planes	67	7.4 The Fermi Surface 1	190
	3.8 Some Conventions for Specifying Directions	70	7.5 Density of States 1	192
	Problems	72	Problems 1	196
4	Diffraction and Scattering in Crystal Structures	75	8 Weak Potential Approximation and Tight-Binding Method 2	203
	4.1 Bragg Formulation of X-Ray Diffraction by a Crystal	78	8.1 General Approach to the Schrödinger Equation When the Potential is Weak	206
	4.2 Elastic Diffraction Theory and Von Laue Formulation	80	8.2 The Nearly Free Electron Bands in Monatomic Lattices with Bases	213
	4.3 Equivalence of the Bragg and Von Laue Formulations	83	8.3 Energy Bands in One Dimension	215
	4.4 Ewald Construction and Experimental Geometries	85	8.4 Energy Spectrum in Three Dimensions	217
	4.5 Diffraction by a Crystal with a Basis: The Geometrical Structures Factor	89	8.5 Brillouin Zones 2	219
	4.6 The Atomic Scattering Factor in X-Ray, Electron, and Neutron Diffraction	95	8.6 Importance of Spin-Orbit Coupling at Points of High Symmetry	224
	Problems	99	8.7 Wave Function in the Tight-Binding Method: Linear Combination of Atomic Orbitals 2	227
			8.8 General Remarks on the Tight-Binding Method	236
5	The Drude Theory of Metals	103	8.9 Wannier Functions 2	240
	5.1 Basic Assumptions of the Drude Model	104	Problems	242
	5.2 DC Electrical Conductivity of a Metal	110	O. D lab. In law and Electron Assessment and) E 1
	5.3 Hall Effect	117	9 Beyond the Independent Electron Approximation 2	251
	5.4 AC Electrical Conductivity of a Metal	122	9.1 The Hartree Equation 2	252
	5.5 Thermal Conductivity of a Metal	128	9.2 Exchange: The Hartree-Fock Theory	255
	Problems	135	9.3 Hartree-Fock Theory of Free Electrons	257
_		100	9.4 Screening (General)	262
b	The Sommerfeld Theory of Metals	139	9.5 Thomas-Fermi Theory of Screening	265
	6.1 Ground-State Properties of the Electron Gas	142	9.6 Lindhard Theory of Screening	268
	6.2 The Fermi-Dirac Distribution	152	9.7 Density Functional Theory: Hohenberg-Kohn Theorem for Electron Gas	27 0

xx	Co	ntents	Contents	xxi
	9.8 The Kohn-Sham Equations for the DFT	275	12 Measuring the Fermi Surface	369
	9.9 Fermi Liquid Theory	277	12.1 The de Haas-van Alphen Effect	370
	9.10 Fermi Liquid Theory: Quasiparticles	281	12.2 Landau Levels: Free Electrons in a Uniform Magnetic Field	377
	9.11 Fermi Liquid Theory: The <i>f</i> -Function	283	12.3 Landau Levels of Bloch Electrons: Quantized Orbits in a Uniform Magnetic Fig.	
	9.12 Fermi Liquid Theory: Concluding Rules of Thumb	285	12.4 Origin of the Oscillatory Phenomena	381
	Problems	285	12.5 The Effect of Electron Spin on the Oscillatory Phenomena	384
			12.6 Other Fermi Surface Probes	385
10	Other Methods for Calculating Band Structure	289	12.6.1 The magnetoacoustic effect	385
	10.1 General Features of Valence-Band Wave Functions	292	12.6.2 Ultrasonic attenuation	388
	10.2 The Cellular Method	295	12.6.3 Anomalous skin effect	388
	10.3 The Augmented Plane-Wave Method (APW)	301	12.6.4 Cyclotron resonance	389
	10.4 The Green's Function Method of Korringa, Kohn, and Rostoker (KKR)	305	12.6.5 Size effects	390
	10.5 The Orthogonalized Plane-Wave Method (OPW)	308	Problems	393
	10.6 The Pseudopotential	311		
	10.7 The Limitations of DFT	313	13 Band Structure of Selected Metals	399
	Problems	315	13.1 The Monovalent Metals	400
			13.1.1 The alkali metals	401
11	The Semiclassical Transport Theory	317	13.1.2 The noble metals	405
	11.1 Wave Packets of Bloch Electrons	319	13.1.3 Optical properties of the monovalent metals	412
	11.2 Description of the Semiclassical Model	323	13.2 The Divalent Metals	418
	11.2.1 A many-carrier theory	$\bf 325$	13.2.1 The cubic divalent metals	419
	11.2.2 Limits of validity	$\bf 325$	13.2.2 The hexagonal divalent metals	420
	11.3 Consequences of the Semiclassical Equations of Motion	327	13.3 The Trivalent Metals	421
	11.3.1 Filled bands are inert	327	13.3.1 Aluminum	421
	11.3.2 Carriers in solids: electrons and holes	330	13.4 The Tetravalent Metals	426
	11.3.3 Semiclassical motion in a uniform magnetic field	336	13.4.1 Lead	426
	11.3.4 Semiclassical motion in perpendicular uniform electric and magnetic field	341	13.5 The Semimetals	427
	11.4 The Relaxation-Time Approximation	342	13.5.1 The pentavalent semimetals	427
	11.5 Calculation of the Nonequilibrium Distribution Function	344	13.6 The Transition Metals	429
	11.6 Transport Properties of Solids Using Nonequilibrium Distribution	349	13.7 The Rare Earth Metals	433
	11.6.1 DC electrical conductivity	349	13.8 Alloys	435
	11.6.2 AC electrical conductivity11.6.3 Thermal conductivity		Problems	436
			14 Classification of Calida and Caladian France	400
	11.6.4 The thermoelectric power	358	14 Classification of Solids and Cohesive Energy	439
	11.6.5 Other thermoelectric effect	361	14.1 The Classification of Insulators	442
	11.6.6 Semiclassical conductivity in a uniform magnetic field	362	14.2 Ionic Crystals	448
	Problems	362	14.2.1 Alkali halides (I-VII ionic crystals)	449

xxii	Contents	Contents	
14.2.2 Ionic radii	450	17 Classical Theory of the Harmonic Crystal	537
14.2.3 Cohesion in ionic crystals	456	17.1 Failures of the Static Lattice Model	538
14.3 Continuous Variation from Ionic to Covalent Crystals	464	17.1.1 Equilibrium properties	538
14.3.1 II-VI ionic crystals	465	17.1.2 Transport properties	540
14.3.2 III-V crystals (Mixed ionic and covalent)	468	17.1.3 Interaction with radiation	541
14.4 Molecular Crystals	469	17.2 Lattice Dynamic Theory	543
14.4.1 Hydrogen-bonded crystals	471	17.2.1 The harmonic approximation	546
14.4.2 The noble gases	472	17.2.2 The adiabatic approximation	548
14.4.3 Equilibrium properties of the solid noble gases	475	17.3 Normal Modes of a One-Dimensional Monatomic Bravais Lattice	549
14.5 Metals	478	17.4 Normal Modes of a One-Dimensional Lattice with a Basis	553
14.6 Cohesion in Covalent Crystals and Metals	479	17.5 Normal Modes of a Monatomic Three-Dimensional Bravais Lattice	558
14.6.1 Cohesion in covalent crystals	480	17.6 Normal Modes of a Three-Dimensional Lattice with a Basis	565
14.6.2 Cohesion in free electron metals	481	17.7 Connection with the Theory of Elasticity	567
Problems	483	17.7.1 Further reduction in the number of independent elastic constants	568
15 D 141 - Delegation Time Approximation	489	17.7.2 Crystal symmetries	569
15 Beyond the Relaxation-Time Approximation	409	Problems	573
15.1 Sources of Electronic Scattering	491		
15.2 Scattering Probability and Relaxation Time	492	19 Overture Theory of the Henry of Courtel	
15.3 Rate of Change in the Distribution Function Due to Collisions	494	18 Quantum Theory of the Harmonic Crystal	577
15.4 Determination of the Distribution Function: The Boltzmann Equation	497	18.1 Specific Heat of a Classical Crystal: The Law of Dulong and Petit	578
15.5 Impurity Scattering	499	18.2 The Einstein Phonon Model	$\bf 582$
15.6 The Wiedemann-Franz Law	501	18.3 The Debye Phonon Model	584
15.7 Matthiessen's Rule	502	18.4 Comparison of Lattice and Electronic Specific Heats	590
15.8 Scattering in Isotropic Materials	504	18.5 Normal Modes versus Phonons	$\boldsymbol{592}$
Problems	507	18.6 General Form of The Lattice Specific Heat	594
16 Surface Effects	511	18.7 Density of Normal Modes (Phonon Density of States)	595
	011	18.8 Analogy with the Theory of Blackbody Radiation	597
16.1 Effect of the Surface on the Binding Energy of an Electron:		Problems	600
The Work Function	512		
16.2 Contact Potentials	520	19 Measuring Phonon Dispersion Relations	603
16.3 The Measurement of Work Functions via the Measurement of Contact		•	
16.4 Other Ways to Measure Work Function: Thermionic Emission	523	19.1 Neutron Scattering by a Crystal	605
16.5 Measured Work Functions of Selected Metals	526	19.1.1 Zero-phonon scattering	608
16.6 Low-Energy Electron Diffraction	526	19.1.2 One-phonon scattering	609
16.7 The Field Ion Microscope	528	19.1.3 Two-phonon scattering	611
16.8 Electronic Surface Levels	530	19.1.4 Widths of one-phonon peaks	613
Problems	532	19.1.5 Conservation laws and one-phonon scattering	615

xxi	v	Contents	Contents	xxv
	19.2 Electromagnetic Scattering by a Crystal	617	22.6.2 Frequency-dependent electromagnetic behavior	701
	19.2.1 X-ray measurements of phonon spectra	617	22.6.3 Acoustic attenuation	701
	19.2.2 Optical measurements of phonon spectra	618	22.7 Supercurrent Tunneling: The Josephson Effects	701
	19.3 Wave picture of the interaction of radiation with lattice vibrations	621	22.8 Perovskite-Type High- $T_{ m c}$ Superconductors	704
	Problems	$\bf 624$	22.8.1 The Jahn-teller polarons	705
	Troteins		22.8.2 La-Ba-Cu-O high- T_c superconductors	706
20	Anharmonic Effects in Crystals	627	22.8.3 Y-Ba-Cu-O high- T_c superconductors	708
20			22.9 Properties of High- $T_{\rm c}$ Superconductors	713
	20.1 General Aspects of Anharmonic Theories	629	22.9.1 Magnetic properties of cuprate superconductors	713
	20.2 Equation of State and Thermal Expansion in a Harmonic Crystal	631	22.9.2 Superconducting carriers in cuprate superconductors	716
	20.3 Thermal Expansion; The Grüneisen Parameter	634	Problems	721
	20.4 Thermal Expansion of Metals	637	on Till a see of Community destination	705
	20.5 Lattice Thermal Conductivity: The General Approach	638	23 Theory of Superconductivity	725
	20.6 Lattice Thermal Conductivity: Elementary Kinetic Theory	643	23.1 The London Equation	727
	20.7 Second Sound	652	23.2 Microscopic Theory of Superconductivity: Bardeen, Cooper, Schrieffer Theory	730
	Problems	655	23.2.1 Cooper pairs	731
			23.2.2 BCS ground state	734
2 1	Phonons in Metals	657	23.2.3 BCS excited states	737
	21.1 Phonon Dispersion in Metals	658	23.3 Quantitative Predictions of the BCS Theory	739
	21.2 Kohn Anomalies	661	23.3.1 Critical temperature	740
	21.3 Dielectric Constant of a Metal	662	23.3.2 Energy gap	740
	21.4 Effective Electron-Electron Interaction	665	23.3.3 Critical field	$\bf 742$
	21.5 Phonon Contribution to the Electron Spectrum	667	23.3.4 Specific heat	743
	21.6 The Electron-Phonon Interaction	670	23.3.5 Meissner effect	744
	21.7 The Temperature-Dependent Electrical Resistivity of Metals	672	23.4 The Ginzburg-Landau Theory	745
	21.8 Modification of the T ⁵ Law by Umklapp Processes	677	23.4.1 Flux quantization	747
	21.9 Phonon Drag	678	23.4.2 Critical phenomena at zero field	748
	Problems	680	23.4.3 Ginzberg-Landau equation, London equation, and Flux tube	749
	Toblems		23.5 Microscopic Theory and Persistent Currents	750
	The live and and High T. Supergonductors	685	Problems	753
22	Traditional and High- $T_{ m c}$ Superconductors		24 Homogeneous Semiconductors	757
	22.1 Critical Temperature of Type I and Type II Superconductors	688	_	
	22.2 Persistent Currents	691	24.1 Examples of Semiconductors	762
	22.3 Thermoelectric Properties	692	24.2 Typical Semiconductor Band Structures	765
	22.4 Magnetic Properties: Meissner Effect and Abrikosov Lattice	693	24.3 Cyclotron Resonance	769
	22.5 Specific Heat	697	24.4 Number of Carriers in Thermal Equilibrium	771
	22.6 Measuring the Energy Gap in Superconductors	699	24.4.1 Intrinsic case	775
	22.6.1 Normal tunneling	699	24.4.2 Extrinsic case: some general features	776

XX	vi	Contents	Co	ntents	xxvii
	24.5 Impurity Levels	778		27.6 Excitons	891
	24.6 Population of Impurity Levels in Thermal Equilibrium	782		27.7 Line Defects: Dislocations	895
	24.7 Thermal Equilibrium Carrier Densities of Impure Semiconductors	784		27.8 Crystalline Strength	901
	24.8 Impurity Band Conduction	787		27.9 Dislocations and Crystal Growth	902
	24.9 The Theory of Transport in Nondegenerate Semiconductors	788		27.10 Observation of Dislocations and Other Defects	904
	Problems	789		27.11 Surface Imperfections: Stacking Faults	904
				27.12 Low-Angle Grain Boundary	905
25	Inhomogeneous Semiconductors	793		Problems	906
	25.1 The Semiclassical Model	796	26	Dielectric and Optical Properties of Insulators	911
	25.2 The p-n Junction in Equilibrium	797	20		
	25.3 Elementary Picture of Rectification by a p-n Junction	803		28.1 Maxwell Equations in the Media	912
	25.4 General Physical Aspects of the Nonequilibrium Case	808		28.2 Theory of the Local Field	919
	25.5 A More Detailed Theory of the Nonequilibrium p-n Junction	814		28.3 Theory of the Polarizability	$\boldsymbol{924}$
	Problems	821		28.3.1 Atomic polarizability: electronic polarizability in ionic crystals	925
26	Semiconductor Devices	825		28.3.2 Displacement polarizability	927
26				28.3.3 Application to long-wavelength optical, modes of ionic crystals	930
	26.1 Semiconductor Fabrication Technology	828		28.3.4 Application to the optical properties of ionic crystals	934
	26.1.1 Semiconductor crystal growth	830		28.4 Covalent Insulators	937
	26.2 Metal-Semiconductor Contacts	832		Problems	941
	26.2.1 Schottky barriers	832	29	Ferroelectricity and Piezoelectricity	945
	26.2.2 Ohm contact	837		·	
	26.3 p-n Junctions	839		29.1 Pyroelectricity	947
	26.3.1 Shockley-Read-Hall statistics and realistic I–V curve	839		29.2 Ferroelectricity	950
	26.3.2 Junction breakdown	844		29.3 The Landau-Ginzberg-Devonshire Thermodynamic Theory of Ferroelectrics	955
	26.3.3 Transient behavior	845		29.4 Piezoelectricity and Its Relationship with Ferroelectricity	958
	26.4 Bipolar Transistors	846		29.5 Piezoelectric Coefficients	962
	26.5 Metal-Oxide-Semiconductor Field Effect Transistor	852		Problems	966
	26.6 Phototransistor, Photodiodes and Light-Emitting Diode	857	30	Diamagnetism and Paramagnetism	969
	26.7 Heterojunctions	864		30.1 Magnetization Density and Susceptibility	971
	26.8 Semiconductor Laser Diode	867		30.2 Calculation of Atomic Susceptibilities: General Formulation	972
	Problems	872		30.3 Susceptibility of Insulators with All Shells Filled: Larmor Diamagnetism	976
27	Defects in Crystals	875		30.4 Ground State of Ions with a Partially Filled Shell: Hund's Rules	978
	·	877		30.5 Susceptibility of Insulators Containing Ions with a Partially Filled Shell:	
	27.1 Point Defects: General Thermodynamic Features27.2 Line or Surface Defects and Thermodynamic Equilibrium	882		Paramagnetism	981
	27.3 Point Defects: The Electrical Conductivity of Ionic Crystals	883		30.5.1 Magnetization of a set of identical ions of angular momentum J :	
	27.4 Color Centers	886		Curie's law	985
	27.5 Polarons	890		30.5.2 Curie's law in solids	987
	21.3 FUIdIUIIS	ชยบ		20.2.2 Care of any misoness	001

XXV	riii	Contents	Contents	xxi
	30.6 Thermal Properties of Paramagnetic Insulators: Adiabatic Demagnetization	991 993	33.6 Microstructure and the Hysteresis of Magnetic Materials33.7 Giant Magnetoresistive Effect	109
	30.7 Susceptibility of Metals: Pauli Paramagnetism 30.8 Conduction Electron Diamagnetism	997	33.8 Tunneling Magnetoresistive Effect	110
	-	1000	33.9 Spin Transfer Torque: Control of Magnetization by Polarized Current	1110
	30.9 Measurement of Pauli Paramagnetism by Nuclear Magnetic Resonance Problems	1002	Problems	$\frac{112}{112}$
0.1		1007		
31	Electron Interactions and Magnetic Structure		34 Landau Levels and Quantum Hall Effect	112'
	31.1 Estimate of Magnetic Dipolar Interaction Energies	1010	34.1 Landau Quantization in a Magnetic Field	112
	31.2 Magnetic Properties of a Two-Electron System: Singlet and Triplet States	1011	34.2 Quantum Hall Effect	113
	31.3 Calculation of the Singlet-Triplet Splitting: Failure of the Independent Ele		34.3 The Role of Localization Effects	113
	Approximation	1013	34.4 Fractional Quantum Hall Effect	113
	31.4 Electronic Structure of Ferromagnetic Elements in Transition Metals	1018	34.5 Incompressible Quantum Liquid	114
	31.5 The Spin Hamiltonian and the Heisenberg Model	1021	Problems	114
	31.6 Direct, Super, Indirect, and Itinerant Exchanges	1025	25 Characterization Mathada of Salida has Duch as	118
	31.7 The Hubbard Model	1029	35 Characterization Methods of Solids by Probes	115
	31.8 Localized Moments in Alloys	1031	35.1 Scanning Tunneling Microscopy	115
	31.9 The Kondo Theory of the Resistance Minimum	1033	35.2 Atomic Force Microscopy	1159
	Problems	1035	35.3 Magnetic Force Microscopy	1164
32	Magnetic Ordering	1041	35.4 Imaging with Electrons as Probes Problems	1168 117
	32.1 Magnetic Structure Types at the Atomic Scale	1043		
	32.2 Observation of Magnetic Structures	1047	Appendices	
	32.3 Thermodynamic Properties at the Onset of Magnetic Ordering	1048	A Summary of Important Numerical Relations in the	
	32.4 Zero-Temperature Properties: Ground State of the Heisenberg Ferromagnet	1052	Free Electron Theory of Metals	1173
	32.5 Zero-Temperature Properties: Ground State of the Heisenberg Antiferromagnet		B The Chemical Potential	1177
	32.6 Low-Temperature Behavior of the Heisenberg Ferromagnet: Spin Waves	1056		
	32.7 High-Temperature Susceptibility	1062	C The Sommerfeld Expansion	1179
	32.8 Analysis of the Critical Point	1066	D Plane Wave Expansions of Periodic Functions in More	
	32.9 Mean Field Theory	1070	Than One Dimension	1183
	Problems	1075	E The Velocity and Effective Mass of Bloch Electrons	1187
33	Applied Magnetism and Spintronics	1079	F Some Identities Related to Fourier Analysis of Periodic S	ystems 119
	33.1 The Dynamics of Magnetic Moments: Landau-Lifshitz Equations	1081	G The Variational Principle for Schrödinger's Equation	1193
	33.2 Magnetic Effective Energy and Local Effective Magnetic Field	1084 1086	H The Second Quantization in Many-Particle System	1198
	33.3 Exchange Field and Anisotropy Field	1090	I Hamiltonian Formulation of the Semiclassical Equations	
	33.4 Demagnetizing Matrix: Calculation of Demagnetizing Field33.5 Domain Theory	1093	of Motion, and Liouville's Theorem	1199

xx	x	Contents
J	Green's Theorem for Periodic Functions	1201
K	Conditions for the Absence of Interband Transitions in	
	Uniform Electric or Magnetic Fields	1203
${f L}$	Optical Properties of Solid	1207
M	Quantum Theory of the Harmonic Crystal	1213
N	Conservation of Crystal Momentum	1219
o	Theory of the Scattering of Neutrons by a Crystal	1227
P	Evaluation of the Landé g-Factor	1235
Bi	bliography	1237
Inc	dex	1261

Important Tables

The more important tables of data¹ or theoretical results are listed below.

To aid the reader in hunting down a particular table, we have grouped them into several broad categories. Theoretical results are listed only under that heading, and data on magnetic and superconducting metals are listed under magnetism and superconductivity, rather than under metals. Accurate values of the fundamental constants are also given in the front matter of this edition.

Theoretical Results

The cubic crystallographic point groups	43
The noncubic crystallographic point groups	44
Comparison of properties of Sommerfeld and Bloch electrons	320
Comparison of the general treatment of collisions with the relaxation-time approximation	496
Lattice sums of inverse n th powers for the cubic Bravais lattices	476
Madelung constants for some cubic crystal structures	459
Numbers of independent elastic constants for the seven crystal systems	570
Values of the Debye specific heat	588
Comparison of phonons and photons	598
Comparison of a gas of molecules and a gas of phonons	652
Characteristic lengths in a p-n junction	815
Ground states of ions with partially filled d - or f -shells	982
Comparison of exact and mean field critical temperatures for several Ising models	1073
Major numerical formulas of free electron theory	1173

xxxi

¹ The data in the tables are presented with the aim of giving the reader an appreciation for orders of magnitude and relative sizes. We have therefore been content to quote numbers to one or two significant places and have not made special efforts to give the most precise values. Readers requiring data for fundamental research should consult the appropriate sources.