Contents

Cor	nplex	Plasma – Why It Is an Unusual State of Matter?	1
1.1	Gener	cal Physical Differences Between Complex Plasma	
	and C	Ordinary Matter]
1.2	Gener	cal Terminology in Complex Plasma and Ordinary Matter	3
1.3	Histor	ry: Complex Plasmas in Space Physics	4
1.4	Problems of Strong Coupling in Plasmas		
	1.4.1	Phase Space for Strong Coupling in Ordinary Plasmas .	6
	1.4.2	Physics and Consequences of Large Grain Charges	ç
	1.4.3	Physics and Consequences of Dust Charge Screening	11
	1.4.4	Phase Space for Strong Coupling in Complex Plasmas .	14
1.5	Open	ness of Complex Plasma Systems and Long-range	
	Collec	etive Interactions	16
	1.5.1	Variability of Grain Charges	16
	1.5.2	Openness of Complex Plasma Systems	18
	1.5.3		
1.6	Plasma Condensation		
	1.6.1	First Observations of Plasma Condensation	23
	1.6.2		
1.7	Special Aspects of Complex Plasma Investigations		27
	1.7.1	Kinetic Level for Dust Investigation in Experiments	27
	1.7.2	Obstacles in Complex Plasmas	30
	1.7.3	Interactions of Grain Clouds and Fast Grains	
		with Plasma Crystals	32
1.8	Struct	tures and Self-organization in Complex Plasmas	
	1.8.1	Observations of Structures in Complex Plasmas	
	1.8.2	Self-organization in Complex Plasmas	
1.9	Outlo	ok of the Subsequent Presentation	
Dof	won ood		16

2	$\mathbf{W}\mathbf{h}$	y Com	plex Plasmas Have Many Applications in Future	
	\mathbf{Tec}		y?	47
	2.1	Main I	Discoveries in Applications of Complex Plasmas	47
	2.2	Comp	uter Technology	48
		2.2.1	Simple Principles Used in Computer Technology	48
		2.2.2	Investigation of Dust Clouds in Etching Devices	49
	2.3		Steps to Using Complex Plasma Properties in Computer	
		Indust	cry	52
		2.3.1	New Laboratory Experiments in Complex Plasmas	
			Inspired by Computer Technology Problems	53
	2.4	New S	Surfaces, New Materials	54
		2.4.1	New Surfaces	
		2.4.2	New Materials	
		2.4.3	New Magnetic Materials	
	2.5	New E	Energy Production	
		2.5.1	Necessity of New Energy Sources	57
		2.5.2	Controlled Fusion Devices	58
		2.5.3	Table Size Fusion and Neutron Sources	61
		2.5.4	Solar Cells	62
	2.6		onmental Problems	
		2.6.1	Dust is Found Everywhere	
		2.6.2	Global Warming	
		2.6.3	Noctilucent Clouds	63
		2.6.4	The Ozone Layer	64
		2.6.5	Industrial Emissions and Car Exhausts	64
	Refe	erences		65
3	Ele	mentai	ry Processes in Complex Plasmas	67
	3.1	Screen	aing of Grain Field in a Plasma	67
		3.1.1	Elementary Estimates	67
		3.1.2	Linear Debye Screening	69
		3.1.3	Non-linear Screening	71
		3.1.4	Problems to Solve in Grain Screening	79
	3.2	Charg	ing of Grains in Partially Ionized Plasma	86
		3.2.1	Introductory Remarks	86
		3.2.2	Equation for Micro-particle Charging	86
		3.2.3	Orbital Motion Limited Model	
		3.2.4	Extensions of OML Approach	93
		3.2.5	Role of Potential Barriers in Non-linear Screening	
			for Grain Charging	
		3.2.6	Radial Drift Limited Model	106
		3.2.7	Diffusion Limited Model	109
		3.2.8	Problems for Modeling of Grain Charging	
	3.3	Forces	s Acting on Ions	114
		3.3.1	Absorption of Ions on Grains, The Charging Coefficient	114

		Contents XI
	3.3.2	Friction of Ions in Gas of Grains. The Drag Coefficient . 117
	3.3.3	Other Forces Acting on Ions
3.4		Acting on Grains
3.4	3.4.1	Ion Drag and Electric Field Forces
	3.4.2	Temperature Gradients and Thermophoretic Force127
	3.4.3	Neutral Gas Drag force, Gravity force,
	0.1.0	and Dust Inertia
3.5	Forces	Acting on Electrons: Characteristic Electric Fields 132
0.0	3.5.1	Electron Friction in Absorbing Collisions with Grains
	0.0	and Electron Inertia
	3.5.2	Balance of Forces for Electrons
	3.5.3	Electric Fields and Condition for Quasi-neutrality 135
Refe	rences	
	lective	Effects in Complex Plasmas
4.1		tive Linear Modes
	4.1.1	Dispersion Relations for Low Frequency Modes
	4.1.2	Basic State of Complex Plasmas144
	4.1.3	Dispersion Relation for DISW
	4.1.4	Dispersion Relation for DAW
4.2		rsal Instability of a Complex Plasma
	4.2.1	Instability in the Range of DISW
	4.2.2	Instability in the Range of DAW
	4.2.3	Instability Stabilization in the Range of DAW
	4.2.4	Physics of the Instability
	4.2.5	Instability Rates
	4.2.6	Effects of Finite Size
	4.2.7	Electrostatic Gravitational-like Instability and Modes
		in Plasma Clusters
	4.2.8	Complex Plasma Structurization
4.3		tive Modes Excited by Fast Particles
	4.3.1	Mach Cones: General Remarks and the Cone Angle 165
	4.3.2	Wave Intensity and Distribution of Wavelengths166
	4.3.3	Wave Excitation by Outside Particles Moving near
	0.1	Boundary
4.4		vations of Collective Modes
	4.4.1	Introductory Remarks
	4.4.2	Experimental Observations of DISW
	4.4.3	Experimental Observations of DAW
4.5		ems to be Solved for Collective Modes
	4.5.1	Structurization Instability and the Finite System

4.5.7 Strong Non-linearities and Modulational Interactions 184 4.5.8 Kinetic Description of Collective Modes	
4.6 Fluctuations, Collective Pair Interactions,	
and Pair Correlation Functions	
4.6.1 Relations between Various Fluctuations	
4.6.2 Correlation Functions	
4.6.3 Zero Fluctuations and Collective Pair Interactions	
of Grains	
4.6.4 Dust Non-collective Charge Fluctuations 189	
4.6.5 Charge Fluctuations Induced by Dust Fluctuations 193	
References	
5 Micro-particle Collective and Non-collective Pair	
Interactions	
5.1 General Properties of Micro-particle Pair Interactions 197	
5.1.1 Grain Pair Interactions in Crystals and Clusters	
5.1.2 Two Grains: Electrostatic Energy and Interaction	
Forces	7
5.1.3 Role of Openness of Complex Plasma Systems	•
5.1.4 Pair Interaction and Non-linearity in Screening 203	
5.2 Shadow Non-collective Attraction Forces205	
5.2.1 Shadow Attraction Created by Ion Flux	
5.2.2 Shadow Attraction Created by Neutral Flux	
5.2.3 Agglomeration of Grains	
5.2.4 Problems of Non-collective Grain Attraction	
5.3 Collective Attraction for Linear Screening	
5.3.1 Collective Attraction in the Limit $\beta \ll 1 \dots 215$	
5.3.2 Physics of Collective Attraction	
5.3.3 Attraction of Finite Size Grains	
5.3.4 Natural Boundary Conditions	
5.3.5 Limiting Expressions for Collective Attraction 222	
5.3.6 Attraction in an Ion Flow for $\beta \ll 1 \dots 224$	
5.3.7 Attraction in a Magnetic Field for $\beta \ll 1 \dots 225$	
5.4 Collective Interactions for Non-linear Screening	
5.4.1 Collision-dominated Case $\beta \gg 1 \dots 227$	
5.4.2 Ionization Proportional to Electron Density	8
5.4.3 General Properties of Non-linear Collective Attraction . 231	
5.5 Measurements of Screened Potential in Grain-grain Collisions . 234	
5.5.1 Experimental Technique	
5.5.2 Collision Experiments	
5.5.3 Problems for Future Experiments242	
References	

6			ents on Plasma Crystals and Long-range	
	Co		ons	
	6.1		na Crystals	
		6.1.1	Crystal Structures Observed	
		6.1.2	Observational Techniques	
		6.1.3	Structure of Crystals	
		6.1.4	Dislocations and Defects	
	6.2		ng and Phase Transitions	
		6.2.1	General Description of Phase Transitions	
		6.2.2	Phenomenological Description	. 271
		6.2.3	Translational and Orientational Order	
		6.2.4	Dust Grain Temperatures	
	6.3		ligms for Plasma Crystal Formation	
		6.3.1	Applicability of New Paradigms	
		6.3.2	Paradigms for Crystal Formation	
		6.3.3	Van der Waals Equations and Collective Interactions	. 281
	6.4		ration from Experiments	
	Ref	erences		. 286
_	3.6		71 6 1 1 2 2	
7			er Plasma Crystals and Clusters	
	7.1		-layer Plasma Crystals	. 289
		7.1.1	Specific Properties of Mono-layers	. 289
		7.1.2	Theory of 2D Dust-lattice Waves	. 293
		7.1.3	Experiments on 2D Dust-lattice Waves	. 295
		7.1.4	Stimulated Plasma Crystal Sublimation	. 299
		7.1.5	Theory of Dust Bending Waves	. 300
		7.1.6	2D Dust Shear Waves	. 302
		7.1.7	2D Dust-lattice Wave Mach Cones	. 303
	7.2		asma Clusters	. 305
		7.2.1	Introductory remarks	. 305
		7.2.2	Experiments on Small and 2D Clusters	
		7.2.3	Observations and Ordering Rules	
		7.2.4	Theory of 2D Clusters	. 314
		7.2.5	Boundary-free 2D Clusters	. 320
		7.2.6	Numerical Simulations of Boundary-free Clusters	. 326
	Refe	erences		. 330
8	Cor	nmant	s on Other Dust Structures: Concluding	
O			s on other bust structures; Concluding	222
	8.1		Helical Clusters	
	0.1	8.1.1	General Remarks	
		8.1.2	MD Simulations and Analytical Results	
		8.1.3	Problems to Solve	
	8.2		lered Grain Structures	. აან 227
	0.2	8.2.1	Role of Plasma Fluxes	
		0.4.1	Tione of Flashia Fluxes	. 337

37737	a
XIV	Contents

	8.2.2 Structures in Disordered States	338
	8.2.3 General Features of Disordered Structures	341
	8.2.4 Dust Void Problems	$\dots 345$
	8.2.5 Problems for Future Investigations	348
8.3	Dust Wall Sheaths	
	8.3.1 General Remarks	349
	8.3.2 Collisionless Dust Wall Sheaths	350
	8.3.3 Further Problems of Dust Wall Sheath Studies	$\dots 352$
8.4	Dust Structures between Walls	
	8.4.1 Collision-Dominated Single Flat Layer	353
	8.4.2 Other Structures between Electrodes	$\dots 354$
	8.4.3 Problems for Future Research	
8.5	Dust Convection in Structures	$\dots 355$
	8.5.1 General Remarks	355
	8.5.2 Problems to Solve	
8.6	Hybrid Dust Structures	
8.7	Micro-gravity Experiments	359
8.8	Future Research: Outlook for Complex Plasmas	360
8.9	Conclusion	362
	erences	369