Contents

1	Mas	s Conservation	1
	1.1	Introduction	1
	1.2	Basic Definitions	2
	1.3	Nonstructured and Structured Fields	9
	1.4	The Slattery and Whitaker Local Spatial Averaging Theorem	10
	1.5	General Transport Equation (Leibnitz Rule)	12
	1.6	Local Volume-Averaged Mass Conservation Equation	13
	1.7	Time Average	16
	1.8	Local Volume-Averaged Component Conservation Equations	18
	1.9	Local Volume- and Time-Averaged Conservation Equations	21
	1.10	Conservation Equations for the Number Density of Particles	24
	1.11	Implication of the Assumption of Monodispersity in a Cell	30
		1.11.1 Particle Size Spectrum and Averaging	30
		1.11.2 Cutting of the Lower Part of the Spectrum due to Mass	
		Transfer	31
		1.11.3 The Effect of Averaging on the Effective Velocity	
		Difference	33
	1.12	Stratified Structure	35
	1.13	Final Remarks and Conclusions	35
	Refe	prences	37
2	Con	servation of Momentum	41
-	2.1	Introduction	41
	2.2	Local Volume-Averaged Momentum Equations	41
		2.2.1 Single-Phase Momentum Equations	41
		2.2.2 Interface Force Balance (Momentum Jump	
		Condition)	42
		2.2.3 Local Volume Averaging of the Single-Phase Momentum	
		Equation	49
	23	Rearrangement of the Surface Integrals	51
	$\frac{2.3}{2.4}$	Local Volume Average and Time Average	55
	2.5	Dispersed Phase in a Laminar Continuum – Pseudo	
	2.0	Turbulence	56
	2.6	Viscous and <i>Reynolds</i> Stresses	57

Concona

Appendix 3.1: Application of the Theory to Steam-Air Mixtures	167
Appendix 3.2: Useful References for Computing Properties of	
Single Constituents	169
Appendix 3.3: Useful Definitions and Relations between	
Thermodynamic Quantities	171
References	172

4 On the Variety of Notations of the Energy Conservation

for S	ingle-Phase Flow				
4.1	Introduction				
4.2	Mass and Momentum Conservation, Energy Conservation				
4.3	Simple Notation of the Energy Conservation Equation				
4.4	The Entropy				
4.5	Equation of State				
4.6	Variety of Notation of the Energy Conservation Principle				
	4.6.1 Temperature				
	4.6.2 Specific Enthalpy				
4.7	Summary of Different Notations				
4.8	The Equivalence of the Canonical Forms				
4.9	Equivalence of the Analytical Solutions				
4.10	Equivalence of the Numerical Solutions?				
	4.10.1 Explicit First Order Method of Characteristics				
	4.10.2 The Perfect Gas Shock Tube: Benchmark for Numerical				
	Methods				
4.11	Interpenetrating Fluids				
4.12	Summary of Different Notations for Interpenetrating Fluids				
Appe	endix 4.1: Analytical Solution of the Shock Tube Problem				
Appe	endix 4.2: Achievable Accuracy of the Donor-Cell Method for				
	Single-Phase Flows				
Refe	rences				
First	and Second Laws of the Thermodynamics				
5.1	Introduction				
5.2	Instantaneous Local Volume Average Energy Equations				
5.3	Dalton and Fick's Laws, Center of Mass Mixture Velocity,				
	Caloric Mixture Properties				
5.4	Enthalpy Equation				
5.5	Internal Energy Equation				
5.6	Entropy Equation				
5.7	Local Volume- and Time-Averaged Entropy Equation				
5.8	Local Volume- and Time-Averaged Internal Energy Equation				
5.9	Local Volume- and Time-Averaged Specific Enthalpy				
	Equation				
	-				

2.7	Nonequal Bulk and Boundary Layer Pressures	62
	2.7.1 Continuous Interface	62
	2.7.2 Dispersed Interface	76
2.8	Working form for the Dispersed and Continuous Phase	92
2.9	General Working form for Dispersed and Continuous Phases	97
2.10	Some Practical Simplifications	99
2.11	Conclusion	103
App	endix 2.1	104
App	endix 2.2	105
App	endix 2.3	105
Refe	rences	110

3	Deri	ivatives for the Equations of State11	17
	3.1	Introduction 11	17
	3.2	Multi-component Mixtures of Miscible and Non-miscible	
		Components 11	9
		3.2.1 Computation of Partial Pressures for Known Mass	
		Concentrations, System Pressure and Temperature 12	21
		3.2.2 Partial Derivatives of the Equation of State	
		$\boldsymbol{\rho} = \boldsymbol{\rho} \left(p, T, C_{2\dots,i_{\max}} \right) \tag{12}$	27
		3.2.3 Partial Derivatives in the Equation of State	
		$T = T\left(\varphi, p, C_{2,\dots,i_{\max}}\right), \text{ where } \varphi = s, h, e \dots$	33
		3.2.4 Chemical Potential 14	42
		3.2.5 Partial Derivatives in the Equation of State	
		$\rho = \rho \left(p, \varphi, C_{2,\dots, i_{\max}} \right), \text{ where } \varphi = s, h, e \dots$	52
	3.3	Mixture of Liquid and Microscopic Solid Particles of	
		Different Chemical Substances 15	55
		3.3.1 Partial Derivatives in the Equation of State	
		$\boldsymbol{\rho} = \boldsymbol{\rho}\left(\boldsymbol{p}, \boldsymbol{T}, \boldsymbol{C}_{2,\dots,i_{\max}}\right) \tag{15}$	55
		3.3.2 Partial Derivatives in the Equation of State	
		$T = T(p, \varphi, C_{2,\dots,i_{\max}}) \text{ where } \varphi = h, e, s \dots 15$	56
	3.4	Single-Component Equilibrium Fluid 15	57
		3.4.1 Superheated Vapor 15	57
		3.4.2 Reconstruction of Equation of State by Using a Limited	
		Amount of Data Available 15	59
		3.4.3 Vapor-Liquid Mixture in Thermodynamic Equilibrium 16	56
		3.4.4 Liquid-Solid Mixture in Thermodynamic Equilibrium 16	56
		3.4.5 Solid Phase 16	57
	3.5	Extension State of Liquids 16	57

Contents

323

324

325

326

326

328

329

333

333

335

335

338

338

339

339

341

348

352

360

367

367

368

372

374

376

377

379 381

387

389

389

5.1	0 Non-Conservative and Semi-Conservative Forms of the			7.3.1 The Exergy Definition in Accordance with <i>Reynolds</i>
	Entropy Equation	244		and <i>Perkins</i>
5.1	1 Comments on the Source Terms in the Mixture Entropy			7.3.2 The Exergy Definition in Accordance with <i>Gouy</i>
	Equation	246		(l'énergie utilisable, 1889)
5.1	2 Viscous Dissipation	250		7.3.3 The Exergy Definition Appropriate for Estimation
5.1	3 Temperature Equation	256		of the Volume Change Work
5.1	4 Second Law of the Thermodynamics	260		7.3.4 The Exergy Definition Appropriate for Estimation
5.1	5 Mixture Volume Conservation Equation	261		of the Technical Work
5.1	6 Linearized Form of the Source Term for the Temperature		7.4	Some Interesting Consequences of the Fundamental Exergy
	Equation	266		Equation
5.1	7 Interface Conditions	273	7.5	Judging the Efficiency of a Heat Pump as an Example of
5.1	8 Lumped Parameter Volumes	274		Application of the Exergy
5.1	9 Steady State	275	7.6	Three-Fluid Multi-component Systems
5.2	0 Final Remarks	281	7.7	Practical Relevance
Re	ferences	282	Re	ferences
, So	me Simple Applications of Mass and Energy Conservation	285	8 Or	e-Dimensional Three-Fluid Flows
6.1	Infinite Heat Exchange without Interfacial Mass Transfer	285	8.1	Summary of the Local Volume- and Time-Averaged
6.2	Discharge of Gas from a Volume	287		Conservation Equations
6.3	Injection of Inert Gas in a Closed Volume Initially Filled with		8.2	2. Treatment of the Field Pressure Gradient Forces
	Inert Gas	289		8.2.1 Dispersed Flows
6.4	Heat Input in a Gas in a Closed Volume	290		8.2.2 Stratified Flow
6.5	Steam Injection in a Steam-Air Mixture	291	8.3	Pipe Deformation Due to Temporal Pressure Change
6.6	Heat Removal from a Closed Volume Containing Equilibrium			in the Flow
	Two-Phase Mixture	294	8.4	Some Simple Cases
6.7	Chemical Reaction in a Gas Mixture in a Closed Volume	297	8.5	Slip Model – Transient Flow
6.8	Hydrogen Combustion in an Inert Atmosphere	299	8.6	Slip Model – Steady State. Critical Mass Flow Rate
	6.8.1 Simple Introduction to Combustion Kinetics	299	8.7	Forces Acting on the Pipes Due to the Flow – Theoretical
	6.8.2 Ignition Temperature and Ignition Concentration			Basics
	Limits	301	8.8	B Relief Valves
	6.8.3 Detonability Concentration Limits	302		8.8.1 Introduction
	6.8.4 The Heat Release Due to Combustion	302		8.8.2 Valve Characteristics, Model Formulation
	685 Fauilibrium Dissociation	304		8.8.3 Analytical Solution
	68.6 Source Terms of the Energy Conservation of the Gas	001		8.8.4 Fitting the Piecewise Solution on Two Known Positio
	Phase	308		Time Points
	6.8.7 Temperature and Pressure Changes in a Closed Control	200		8.8.5 Fitting the Piecewise Solution on Known Velocity an
	Volume: Adjabatic Temperature of the Burned Gases	310		Position for a Given Time
60	Constituents of Sodium Vanor	314		8 8 6 Idealized Valve Characteristics
0.3 Da	forences	318		8 8 7 Recommendations for the Application of the Model
Re		510		in System Computer Codes
				8 8 8 Some Illustrations of the Value Performance Model
Ех	ergy of Multi-phase Multi-component Systems	321		8.8.0 Nomenclature for Section 8.8
7.	Introduction	321	0 (0.0.7 Nomenciature for Section 0.0
7.2	2 The Pseudo-exergy Equation for Single-Fluid Systems	321	8.9	 rump Would 8.0.1 Variables Defining the Dump Debayior
7.3	3 The Fundamental Exergy Equation	323		6.7.1 variables Deming the Fullip Denavior

	5.10	Non-C	Conservative and Semi-Conservative Forms of the					
		Entrop	by Equation					
	5.11	Comm	nents on the Source Terms in the Mixture Entropy					
		Equati	on					
	5.12	Viscou	us Dissipation					
	5.13	Tempe	erature Equation					
	5.14	Secon	d Law of the Thermodynamics					
	5.15	Mixtu	re Volume Conservation Equation					
	5.16	Linear	ized Form of the Source Term for the Temperature					
		Equati	on					
	5.17	Interfa	ce Conditions					
	5.18	Lump	ed Parameter Volumes					
	5.19	Steady	/ State					
	5.20	Final I	Remarks					
	Refe	rences.						
	C	C !						
0	Som		Heat Englands of Mass and Energy Conservation					
	6.1	Infinit	e Heat Exchange without Interfacial Mass Transfer					
	6.2	Discharge of Gas from a Volume						
	6.3	3 Injection of Inert Gas in a Closed Volume Initially Filled with						
		Inert C	Jas					
	6.4	Heat I	nput in a Gas in a Closed Volume					
	6.5	Steam	Injection in a Steam-Air Mixture					
	6.6	Heat F	Removal from a Closed Volume Containing Equilibrium					
		Two-F	Phase Mixture					
	6.7	Chem	ical Reaction in a Gas Mixture in a Closed Volume					
	6.8	Hydro	gen Combustion in an Inert Atmosphere					
		6.8.1	Simple Introduction to Combustion Kinetics					
		6.8.2	Ignition Temperature and Ignition Concentration					
			Limits					
		6.8.3	Detonability Concentration Limits					
		6.8.4	The Heat Release Due to Combustion					
		6.8.5	Equilibrium Dissociation					
		6.8.6	Source Terms of the Energy Conservation of the Gas					
		5.0.0	Phase					

Contents

8.9.2 Theoretical Basics	392
8.9.3 Suter Diagram	401
8.9.4 Computational Procedure	407
8.9.5 Centrifugal Pump Drive Model	408
8.9.6 Extension of the Theory to Multiphase Flow	409
Appendix 1: Chronological References to the Subject Critical	
Two-Phase Flow	413
References	419

Interactions						
9.1	Introd	uction				
9.2	Single	-Phase Theory				
	9.2.1	Continuum Sound Waves (Laplace)				
	9.2.2	Discontinuum Shock Waves (Rankine-Hugoniot)				
	9.2.3	The Landau and Liftshitz Analytical Solution for				
		Detonation in Perfect Gases				
	9.2.4	Numerical Solution for Detonation in Closed Pipes				
9.3	Multi-	phase Flow				
	9.3.1	Continuum Sound Waves				
	9.3.2	Discontinuous Shock Waves				
	9.3.3	Melt-coolant Interaction Detonations				
	9.3.4	Similarity to and Differences from the Yuen and				
		Theofanous Formalism				
	9.3.5	Numerical Solution Method				
9.4	Deton	ation Waves in Water Mixed with Different Molten				
	Mater	ials				
	9.4.1	UO ₂ Water System				
	9.4.2	Efficiencies				
	9.4.3	The Maximum Coolant Entrainment Ratio				
9.5	Concl	usions				
9.6 Practical Significance						
App	endix 9	.1: Specific Heat Capacity at Constant Pressure for Urania				
	and A	lumina				
Refe	rences.					

servation Equations in General Curvilinear Coordinate	
ems	463
Introduction	463
Field Mass Conservation Equations	464
Mass Conservation Equations for Components Inside	
the Field – Conservative Form	467
Field Mass Conservation Equations for Components Inside	
the Field – Non-conservative Form	469
	servation Equations in General Curvilinear Coordinate ems Introduction Field Mass Conservation Equations Mass Conservation Equations for Components Inside the Field – Conservative Form Field Mass Conservation Equations for Components Inside the Field – Non-conservative Form.

Contents

10.5 Particles Number Conservation Equations for Each Velocity	/
Field 10.6. Field Entropy Conservation Equations – Conservative Form	
10.7 Field Entropy Conservation Equations – Non-conservative	•••••
Form	
10.8 Irreversible Power Dissipation Caused by the Viscous Force	es
10.9 The Non-conservative Entropy Equation in Terms of Tempe and Pressure	erature
10.10The Volume Conservation Equation	
10.11 The Momentum Equations	
10.12The Flux Concept, Conservative and Semi-conservative	
Forms	•••••
10.12.1 Mass Conservation Equation	
10.12.2 Entropy Equation	•••••
10.12.3 Temperature Equation	
10.12.4 Momentum Conservation in the x-Direction	
10.12.5 Momentum Conservation in the y-Direction	
10.12.6 Momentum Conservation in the z-Direction	
10.13Concluding Remarks	
References	

11 Type of the System of PDEs...... 493

11.1 Eigenvalues, Eigenvectors, Canonical Form 4	193
11.2 Physical Interpretation 4	196
11.2.1 Eigenvalues and Propagation Velocity of Perturbations 4	196
11.2.2 Eigenvalues and Propagation Velocity of Harmonic	
Oscillations 4	196
11.2.3 Eigenvalues and Critical Flow 4	197
References 4	198

12.1	Introduction	499
12.2	Formulation of the Mathematical Problem	499
12.3	Space Discretization and Location of the Discrete Variables	501
12.4	Discretization of the Mass Conservation Equations	506
12.5	First Order Donor-Cell Finite Difference Approximations	508
12.6	Discretization of the Concentration Equations	510
12.7	Discretization of the Entropy Equation	511
12.8	Discretization of the Temperature Equation	512
12.9	Physical Significance of the Necessary Convergence	
	Condition	515

Content	ts
U U U U U	

12.10Implicit Discretization of Momentum Equations	517	
12.11 Pressure Equations for IVA2 and IVA3 Computer Codes	523	
12.12A Newton-type Iteration Method for Multi-phase Flows	527	
12.13Integration Procedure: Implicit Method	536	
12.14 Time Step and Accuracy Control	537	
12.15High Order Discretization Schemes for Convection-Diffusion		
Terms	539	
12.15.1 Space Exponential Scheme	539	
12.15.2 High Order Upwinding	542	
12.15.3 Constrained Interpolation Profile (CIP) Method	544	
12.16Problem Solution Examples to the Basics of the CIP Method	548	
12.16.1 Discretization Concept	548	
12.16.2 Second Order Constrained Interpolation Profiles	549	
12.16.3 Third Order Constrained Interpolation Profiles	551	
12.16.4 Fourth Order Constrained Interpolation Profiles	552	
12.17Pipe Networks: Some Basic Definitions	572	
12.17.1 Pipes	573	
12.17.2 Axis in the Space	574	
12.17.3 Diameters of Pipe Sections	576	
12.17.4 Reductions	576	
12.17.5Elbows	577	
12.17.6Creating a Library of Pipes	577	
12.17.7 Sub System Network	577	
12.17.8 Discretization of Pipes	578	
12.17.9 Knots	579	
Appendix 12.1: Definitions Applicable to Discretization		
of the Mass Conservation Equations	581	
Appendix 12.2: Discretization of the Concentration Equations	583	
Appendix 12.3: Harmonic Averaged Diffusion Coefficients	586	
Appendix 12.4: Discretized Radial Momentum Equation	587	
Appendix 12.5: The \overline{a} Coefficients for Eq. (12.46)	592	
Appendix 12.6: Discretization of the Angular Momentum		
Equation	592	
Appendix 12.7: Discretization of the Axial Momentum Equation	594	
Appendix 12.8: Analytical Derivatives for the Residual Error		
of Each Equation with Respect to the Dependent Variables	596	
Appendix 12.9: Simple Introduction to Iterative Methods		
for Solution of Algebraic Systems	599	
References	600	

13 Nu	merical N	Methods for	· Multi-phase	Flow in	Curvilinear	Coordinate
-------	-----------	-------------	---------------	---------	-------------	------------

······································	
Systems	
13.1 Introduction	607
13.2 Nodes, Grids, Meshes, Topology – Some Basic Definitions	609

	12.2. Example the solution Mathematical Dashlars	610
	13.5 Formulation of the Matternatical Problem	612
	13.4 Discretization of the Mass Conservation Equations	012
	Volume	612
	12.4.2 The Denor Cell Concept	614
	13.4.2 The Donor-Cell Concept	014
	13.4.3 Two Methods for Computing the Finite Difference	
	Approximations of the Contravariant vectors at the	617
		017
	13.4.4 Discretization of the Diffusion Terms	619
	13.5 Discretization of the Entropy Equation	623
	13.6 Discretization of the Temperature Equation	624
	13.7 Discretization of the Particle Number Density Equation	624
	13.8 Discretization of the x Momentum Equation	625
	13.9 Discretization of the y Momentum Equation	627
	13.10Discretization of the z Momentum Equation	627
	13.11Pressure-Velocity Coupling	628
	13.12Staggered x Momentum Equation	633
	Appendix 13.1: Harmonic Averaged Diffusion Coefficients	643
	Appendix 13.2: Off-Diagonal Viscous Diffusion Terms of the	
	x Momentum Equation	645
	Appendix 13.3: Off-Diagonal Viscous Diffusion Terms of the	
	y Momentum Equation	648
	Appendix 13.4: Off-Diagonal Viscous Diffusion Terms of the z	
	Momentum Equation	650
	References	653
	14 Conservation Equations in the Relative Coordinate System	657
	14 Conservation of Scalars	657
	14.7 Conservation of Scalars.	659
	14.2 Entropy Equation	660
	14.3 Monichum Equation	660
	14.3.1 Shigle Flase Flow, Vector Notation	664
	14.4.4 Associate Magnetitien	667
	14.4 Angular Momentum Conservation	
	14.5 Conservation of Rotation Energy	609
	14.5.1 Rothalpy	672
1.	14.5.2 Isentropic Energy Transfer from the Flow to the	(7)
	Blades	6/3
	14.5.3 Non Isentropic Energy Dissipation	673
	14.5.4 Rotor Stage Power	679
	14.5.2 Tangential Blade Forces	683
	14.5.3 Axial Blade Forces	684
	14.6 Example of the Application of the Axial Turbine Model	687
	14.7 The Energy Jump Across Stator/Rotor Interfaces	689

14.7.1 Energy Jump Approach	689
14.7.2 Continuum Approach	689
14.9. Steady Flow Evennion: Single Dhases Two Dhase Equilibrium	600
14.8 Steady Flow Expansion: Single Phase, Two Phase Equinorium	090
14.9 Transient Turbo-Generator Behavior	702
Appendix 14.1	703
Appendix 14.2: Streamline Momentum Conservation in the Stator	705
Nomenclature	708
i tomenerature	
References	709

15	Visu	al Demonstration of the Method	711
	15.1	Melt-Water Interactions	711
		15.1.1 Cases 1 to 4	711
		15.1.2 Cases 5, 6 and 7	717
		15.1.3 Cases 8 to 10	721
		15.1.4 Cases 11 and 12	732
		15.1.5 Case 13	734
		15.1.6 Case 14	736
	15.2	Pipe Networks	738
	15.3	3D Steam-Water Interactions	740
	15.4	Three-Dimensional Steam-Water Interaction in Presence	
		of Non-Condensable Gases	741
		15.4.1 Case 17	741
	15.5	Three Dimensional Steam Production in Boiling Water	
		Reactor	743
		15.5.1 Case 18	743
	Refe	rences	744
Ар	pend	ix 1: Brief Introduction to Vector Analysis	747
Ap	pend	ix 2: Basics of the Coordinate Transformation Theory	775
Su	bject	Index	831