CONTENTS

Preface			
Future Contributions			
Contributors			
1. Femtosecond Electron Imaging and Spectroscopy	1		
Martin Berz, Philip M. Duxbury, Kyoko Makino, and Chong-Yu Ruan			
2. Imaging with Electrons, X-rays, and Microwaves: Some Scattered Thoughts	135		
Ronald E. Burge			
1. Overview of Career; Influences on Research Selection	136		
2. From Elmiscope to STEM: Imaging with Electrons	148		
3. Binary Optical Filters for Bright-Field Electron Microscopy	181		
4. Electron Scattering and Fourier Phase Retrieval	211		
5. Imaging by X-rays	241		
6. Imaging by Synthetic Aperture Radar	275		
7. Final Comments	298		
References	303		
Contents of Volumes 151–190			
Index			

Imaging with Electrons, X-rays, and Microwaves: Some Scattered Thoughts

Ronald E. Burge

Contents

1.	Over	view of Career; Influences on Research Selection	136
	1.1	Personal Background and Career Development	136
	1.2	Research Development	144
	1.3	Acknowledgments	147
2.	From	Elmiscope to STEM: Imaging with electrons	148
	2.1	Introduction	148
	2.2	CTEM Image Data Compression	152
	2.3	Imaging with STEM	158
	2.4	Signal Detection	160
	2.5	Phase and Amplitude Contrast in Bright-Field STEM	163
	2.6	STEM Quadrant Images, Karhunen-Loeve Transform, and Data Compression	175
3.	Binar	y Optical Filters for Bright-Field Electron Microscopy	181
	3.1	Introduction	181
	3.2	Optical Image Processing	181
	3.3	High-Resolution Electron Microscopy	182
	3.4	Aim and Nature of Image Processing	183
	3.5	Phase and Amplitude Transfer Functions and Defocus Dependence	186
	3.6	Suitable Micrographs for Optical Filtering	188
	3.7	Weak-Phase Object	188
	3.8	Weak-Amplitude Object	190
	3.9	Spatial and Temporal Coherence, Envelope Functions	192
	3.10	Implementation of a Filter for Weak-Phase Objects	200
4.	Electi	on Scattering and Fourier Phase Retrieval	211
	4.1	Introduction	211
	4.2	Electron Scattering	211
	4.3	Measurement of Mass in the Electron Microscope	212
	4.4	Single Elastic Electron Scattering	214
	4.5	Single Inelastic Electron Scattering	217
	4.6	Plural Total (Elastic and Inelastic) Electron Scattering	223

	4.7	Comparison Between Theoretical and Experimental Total Scattering Cross	
		Sections	228
	4.8	Free Atom Theory or Bohm-Pines Plasma Theory with Free Atom	
		Extensions?	232
	4.9	Fourier Phase Retrieval	237
5.	Imagi	ing by X-rays	241
	5.1	Introduction	241
	5.2	Zone Plate Fabrication	245
	5.3	The Scanning Transmission X-ray Microscope (STXM)	248
	5.4	Toward 10-nm Resolution: Scanning Near-Field X-ray Microscopy (SNXM) at	
		the ESRF Grenoble	252
	5.5	A Scanning X-ray Microscope for X-ray Transmission and Surface	
		Topography	257
	5.6	An Imaging X-ray Laser Microscope (IXLM) (1)	259
	5.7	An Imaging X-ray Laser Microscope (IXLM) (2)	264
	5.8	Spatial Coherence Measurements and a Dispersing Diagnostic	265
	5.9	Time Dependence of Spatial Coherence in the XRL	271
	5.10	Comments on Spatial Coherence of the Ge X-ray Laser and Its Dependence	
		on the Geometry of a Multielement Configuration	273
6.	Imag	ing by Synthetic Aperture Radar	275
	6.1	Introduction	275
	6.2	Diffraction Coefficients for Edges and Vertices as Applied in Principle to SAR	
		Imaging: A Physical Optics Version of the Geometric Theory of Diffraction	282
7.	Final	Comments	298
Re	eferences 30		