Contents

1	Frac	etals	1
	1.1	The Concepts of Scale Invariance and Self-Similarity	1
	1.2	Measure Versus Dimensionality	4
	1.3	Self-Similarity (Scale Invariance) as the Origin	
		of the Fractal Dimension	12
	1.4	Fractal Trees	14
	1.5	Self-Affine Fractals	16
	1.6	The Geometrical Support of Multifractals	19
	1.7	Multifractals, Examples	23
		1.7.1 Definitions	23
		1.7.2 The General Case of the Cantor Set	25
		1.7.3 Dimensions of the Subsets	26
		1.7.4 Lengths of the Subsets	29
		1.7.5 Measures of the Subsets	34
		1.7.6 Analogy with Statistical Physics	39
		1.7.7 Subsets $\bar{\eta}$ Versus Subsets α	40
		1.7.8 Summary	41
	1.8	The General Formalism of Multifractals	41
	1.9	Moments of the Measure Distribution	48
	Refe	erences	52
2	Ens	emble Theory in Statistical Physics: Free Energy Potential	55
	2.1	Basic Definitions	55
	2.2	Energy Spectrum	57
	2.3	Microcanonical Ensemble	63
	2.4	MCE: Fluctuations as Nonequilibrium Probability Distributions	69
	2.5	Free Energy Potential of the MCE	80
	2.6	MCE: Free Energy Minimization Principle (Entropy	
		Maximization Principle)	88
	2.7	Canonical Ensemble	90

xi

Contents

	2.8	Nonequilibrium Fluctuations of the Canonical Ensemble	95
	2.9	Properties of the Probability Distribution of Energy Fluctuations	99
	2.10	Method of Steepest Descent	106
	2.11	Entropy of the CE. The Equivalence of the MCE and CE	116
		Free Energy Potential of the CE	118
	2.13	Free Energy Minimization Principle	124
	2.14	Other Ensembles	126
	2.15	Fluctuations as the Investigator's Tool	139
	2.16	The Action of the Free Energy	142
	Refe	rences	146
3	The	Ising Model	149
č	3.1	Definition of the Model	149
	3.2	Microstates, MCE, CE, Order Parameter	152
	3.3	Two-Level System Without Pair Spins Interactions	155
	3.4	A One-Dimensional Nonideal System with Short-Range	
		Pair Spin Interactions: The Exact Solution	159
	3.5	Nonideal System with Pair Spin Interactions:	
		The Mean-Field Approach	165
	3.6	Landau Theory	170
		3.6.1 The Equation of State	170
		3.6.2 The Minimization of Free Energy	172
		3.6.3 Stable, Metastable, Unstable States, and Maxwell's Rule	176
		3.6.4 Susceptibility	180
		3.6.5 Heat Capacity	182
		3.6.6 Equilibrium Free Energy	186
		3.6.7 Classification of Phase Transitions	188
		3.6.8 Critical and Spinodal Slowing Down	189
		3.6.9 Heterogeneous System	195
	3.7	Mean-Field Approach	200
	3.8*		207
	3.9*	e e	217
		* Mixed Ferromagnet-Antiferromagnet	219
	Refe	erences	221
4	The	Theory of Percolation	225
	4.1	The Model of Percolation	226
	4.2	One-Dimensional Percolation	229
	4.3	Square Lattice	233
	4.4	Bethe Lattice	237
	4.5	An Arbitrary Lattice	247
	4.6	The Moments of the Cluster-Size Distribution	253
	Kefe	erences	256

Damage Phenomena				
5.1	The Parameter of Damage	259		
5.2	The Fiber-Bundle Model with Quenched Disorder	261		
5.3	The Ensemble of Constant Strain	263		
5.4	Stresses of Fibers	267		
5.5	The Ensemble of Constant Stress	270		
5.6	Spinodal Slowing Down	277		
5.7*	FBM with Annealed Disorder	281		
Refe	rences	283		
Cor	relations, Susceptibility, and the Fluctuation–Dissipation			
	prem	289		
6.1	Correlations: The One-Dimensional Ising Model	20)		
0.1	with Short-Range Interactions.	290		
6.2	Correlations: The Mean-Field Approach for the Ising	270		
0.2	Model in Higher Dimensions	296		
6.3	Magnetic Systems: The Fluctuation–Dissipation Theorem	311		
6.4	Magnetic Systems: The Fluctuation Dissipation Theorem	318		
6.5	Magnetic Systems: Heat Capacity as Susceptibility	323		
6.6	Percolation: The Correlation Length	328		
6.7	Percolation: Fluctuation–Dissipation Theorem	333		
6.8	Percolation: The Hyperscaling Relation and the Scaling of	555		
0.0	the Order Parameter	336		
6.9	Why Percolation Differs from Magnetic Systems	341		
6.10	Percolation: The Ensemble of Clusters	343		
6.11	The FBM: The Fluctuation–Dissipation Theorem	349		
6.12	The Ising Model	352		
6.13	The FBM: The ε -Ensemble	355		
6.14	The FBM: The σ -Ensemble	356		
	rences	363		
1010		202		
The	Renormalization Group	365		
7.1	Scaling	366		
7.2	RG Approach of a Single Survivor: One-Dimensional			
	Magnetic Systems	368		
7.3	RG Approach of a Single Survivor: Two-Dimensional			
	Magnetic Systems	382		
7.4	RG Approach of Representation: Two-Dimensional			
	Magnetic Systems in the Absence of Magnetic Field	386		
7.5	RG Approach of Representation: Two-Dimensional			
	Magnetic Systems in the Presence of Magnetic Field	398		
7.6	Percolation	406		
7.7	Damage Phenomena	414		

- 1

	7.8	Why does the RG Transformation Return	410
		only Approximate Results?	416
	References		418
8	Scaling: The Finite-Size Effect and Crossover Effects		421
	8.1	Percolation: Why Is the Cluster-Size	
		Distribution Hypothesis Wrong?	421
	8.2	Percolation: The Finite-Size Effect	428
	8.3	Magnetic Systems: The Scaling of Landau Theory	443
	8.4	Magnetic Systems: Scaling Hypotheses	453
	8.5	Magnetic Systems: Superseding Correction	459
	8.6	Crossover Effect of Magnetic Field	464
	8.7	Magnetic Systems: Crossover Phenomena	468
	8.8	Magnetic Systems: The Finite-Size Effect	469
	8.9	The Illusory Asymmetry of the Temperature	472
	8.10	The Formalism of General Homogeneous Functions	475
	8.11	The Renormalization Group as the Source of Scaling	478
	8.12	* Magnetic Systems: Spinodal Scaling	490
	References		492
In	dex		495