CONTENTS

Preface Future Contributions		
Homeomorphic Manifold Analysis (HMA): Untangling Complex Manifolds Ahmed Elgammal		
1. Introduction		
2. Motivating Scenarios	(
3. Framework Overview	1.	
4. Manifold Factorization	10	
5. Inference	2	
6. Applications of Homomorphism on 1-D Manifolds	30	
7. Applications of Homomorphism on 2-D Manifolds	4	
8. Applications to Complex Motion Manifolds	5	
9. Bibliographical Notices	6	
10. Conclusions	7.	
Acknowledgments	7	
References	7	
2. Spin-Polarized Scanning Electron Microscopy Teruo Kohashi	83	
1. Introduction	8	
2. Principles	8	
3. Device Configuration and Sample Preparation	9	
4. Examples of Spin-SEM Measurements	10	
5. Conclusions	12	
Acknowledgments	12.	
References	12.	
Contents of Volumes 151–186	12	
Index		

CHAPTER ONE

Homeomorphic Manifold Analysis (HMA): Untangling Complex Manifolds

Ahmed Elgammal

Contents

1.	Intro	oduction	2
2.	Mot	ivating Scenarios	6
	2.1	Case Example I: Modeling the View-Object Manifold	6
	2.2	Case Example II: Modeling the Visual Manifold of Biological Motion	8
	2.3	Biological Motivation	11
3.	Frar	nework Overview	13
4.	Mar	nifold Factorization	16
	4.1	Style Setting	16
	4.2	Manifold Parameterization	17
	4.3	Style Factorization	18
		4.3.1 One-Style-Factor Model	18
		4.3.2 Multifactor Model	19
	4.4	Content Manifold Embedding	21
		4.4.1 Nonlinear Dimensionality Reduction from Visual Data	22
		4.4.2 Topological Conceptual Manifold Embedding	24
5.	Infe	rence	25
	5.1	Solving for One Style Factor	26
		5.1.1 Iterative Solution	26
		5.1.2 Sampling-based Solution	28
	5.2	Solving for Multiple Style Factors Given a Whole Sequence	28
	5.3	Solving for Body Configuration and Style Factors from a Single Image	29
6.	App	olications of Homomorphism on 1-D Manifolds	30
	6.1	A Single-Style-Factor Model for Gait	31
		6.1.1 Style-Dependent Shape Interpolation	32
		6.1.2 Style-Preserving Posture-Preserving Reconstruction	33
		6.1.3 Shape and Gait Synthesis	34
	6.2	A Multifactor Model for Gait	37
	6.3	A Multifactor Model for Facial Expression Analysis	41

2 Ahmed Elgammal

		6.3.1 Facial Expression Synthesis and Recognition	42
7.	App	olications of Homomorphism on 2-D Manifolds	44
		The Topology of the Joint Configuration-viewpoint Manifold	46
	7.2	Graphical Model	49
	7.3	Torus Manifold Geometry	50
	7.4	Embedding Points on the Torus	50
	7.5	Generalization to the Full-View Sphere	51
	7.6	Deforming the Torus	52
		7.6.1 Torus to Visual Manifold	52
		7.6.2 Torus to Kinematic Manifold	53
		7.6.3 Modeling Shape Style Variations	53
	7.7	Bayesian Tracking on the Torus	54
		7.7.1 Dynamic Model	55
	7.8	Experimental Results	56
8.	App	olications to Complex Motion Manifolds	59
		Learning Configuration-viewpoint, and Shape Manifolds	62
	8.2	Parameterizing the View Manifold	64
		8.2.1 Parameterizing the Configuration Manifold	64
		8.2.2 Parameterizing the Shape Space	65
	8.3	Simultaneous Tracking on the Three Manifolds Using Particle Filtering	65
	8.4	Examples: Pose and View Estimation from General Motion Manifolds	66
		8.4.1 Catch/Throw Motion	66
		8.4.2 Ballet Motion	67
		8.4.3 Aerobic Dancing Sequence	69
9.	. Bibliographical Notices		
	9.1	Factorized Models: Linear, Bilinear, and Multilinear Models	69
	9.2	Manifold Learning	72
	9.3	Manifold-based Models of Human Motion	74
10.	Cor	nclusions	75
٩ck	now	ledgments	77
Refe	eren	ces	77

CHAPTER TWO

Spin-Polarized Scanning Electron Microscopy

Teruo Kohashi

Contents

١.	Introduction	84
2.	Principles	86
	2.1 Principle of Magnetic Domain Observation	86
	2.2 Principle of Spin-Polarization Detection	88
	2.2.1 Mott Polarimeter	8
	2.2.2 Detection of All Three Spin-Polarization Components	9.
3.	Device Configuration and Sample Preparation	96
	3.1 Chamber Configuration	96
	3.2 Sample Preparation	98
	3.3 Electron Gun	9
	3.4 Secondary Electron Optics	100
	3.5 Spin Detectors	10
	3.5.1 Classical Mott Detector	10
	3.5.2 Compact Mott Detector	10-
	3.5.3 Diffuse Scattering Detector	10
	3.5.4 LEED Detector	10.
	3.6 Signal-Analyzing System	10:
4.	Examples of Spin-SEM Measurements	10
	4.1 Co Single Crystal	10
	4.2 HDD Recorded Bits	10
	4.3 Nd ₂ Fe ₁₄ B Magnet	11.
	4.3.1 Magnetization in Boundary Phase of Sintered Magnet	11
	4.3.2 Magnetization Process in the Fine Powders of NdFeB Magnet	11
	4.4 Other Examples of Spin-SEM Measurements	12
5.	Conclusions	12
Αc	cknowledgments	12
References		