Contents

v

Preface

1.	Preli	minaries	1
	1.1	Notation	1
	1.2	Newtonian Potential	5
	1.3	Equation div $u = b$	7
	1.4	Nečas Imbedding Theorem	16
	1.5	Spaces of Solenoidal Vector Fields	21
	1.6	Linear Functionals Vanishing on Divergence Free	
		Vector Fields	22
	1.7	Helmholtz-Weyl Decomposition	26
	1.8	Comments	29
2.	Line	ar Stationary Problem	31
	2.1	Existence and Uniqueness of Weak Solutions	31
	2.2	Coercive Estimates	33
	2.3	Local Regularity	36
	2.4	Further Local Regularity Results, $n = 2, 3$	37
	2.5	Stokes Operator in Bounded Domains	41
	2.6	Comments	45
3.	Non-Linear Stationary Problem		47
	3.1	Existence of Weak Solutions	47
	3.2	Regularity of Weak Solutions	52
	3.3	Comments	60

viii Lecture Notes on Regularity Theory for the Navier-Stokes Equations

4.	Linea	ar Non-Stationary Problem	61		
	4.1	Derivative in Time	61		
	4.2	Explicit Solution	64 75		
	4.3	Cauchy Problem	75		
	4.4	Pressure Field. Regularity	10		
	4.5	Uniqueness Results	80		
	4.6	Local Interior Regularity	84		
	4.7	Local Boundary Regularity	88		
	4.8	Comments	90		
5.	Non-linear Non-Stationary Problem				
	5.1	Compactness Results for Non-Stationary Problems	91		
	5.2	Auxiliary Problem	94		
	5.3	Weak Leray-Hopf Solutions	101		
	5.4	Multiplicative Inequalities and Related Questions	106		
	5.5	Uniqueness of Weak Leray-Hopf Solutions. 2D Case	109		
	5.6	Further Properties of Weak Leray-Hopf Solutions	114		
	5.7	Strong Solutions	119		
	5.8	Comments	132		
6.	Loca	l Regularity Theory for Non-Stationary Navier-			
	Stc	okes Equations	133		
	6.1	ε -Regularity Theory	133		
	6.2	Bounded Ancient Solutions	149		
	6.3	Mild Bounded Ancient Solutions	158		
	6.4	Liouville Type Theorems	166		
		6.4.1 LPS Quantities	166		
		6.4.2 2D case	167		
		6.4.3 Axially Symmetric Case with No Swirl	170		
		6.4.4 Axially Symmetric Case	173		
	6.5	Axially Symmetric Suitable Weak Solutions	178		
	6.6	Backward Uniqueness for Navier-Stokes Equations	184		
	6.7	Comments	188		
7.	Behavior of L_3 -Norm 18				
	7.1	Main Result	189		
	7.2	Estimates of Scaled Solutions	191		
	7.3	Limiting Procedure	197		
	-	5			

7.4	Comments	204		
Appendix	A Backward Uniqueness and Unique Continuation	205		
A.1	Carleman-Type Inequalities	205		
A.2	Unique Continuation Across Spatial Boundaries	210		
A.3	Backward Uniqueness for Heat Operator in Half Space	214		
A.4	Comments	219		
Appendix	B Lemarie-Riesset Local Energy Solutions	221		
B.1	Introduction	221		
B.2	Proof of Theorem 1.6	225		
B.3	Regularized Problem	233		
B.4	Passing to Limit and Proof of Proposition 1.8	237		
B.5	Proof of Theorem 1.7	243		
B.6	Density	249		
B.7	Comments	250		
Bibliography				
Index				

Contents

 $\mathbf{i}\mathbf{x}$