CONTENTS

Phase Space Approach to Solving The Schrödinger Equation: Thinking Inside the Box	1
David J. Tannor, Norio Takemoto, and Asaf Shimshovitz	
Entropy-Driven Phase Transitions In Colloids: From Spheres to Anisotropic Particles	35
Marjolein Dijkstra	
Sub-Nano Clusters: The Last Frontier of Inorganic Chemistry	73
Anastassia N. Alexandrova and Louis-S. Bouchard	
SUPERCOOLED LIQUIDS AND GLASSES BY DIELECTRIC RELAXATION SPECTROSCOPY	101
Ranko Richert	
Confined Fluids: Structure, Properties and Phase Behavior	197
G. Ali Mansoori and Stuart A. Rice	
Theories and Quantum Chemical Calculations of Linear and Sum-Frequency Generation Spectroscopies, and Intramolecular Vibrational Redistribution and Density Matrix Treatment of Ultrafast Dynamics	295
L. Yang, Y.L. Niu, C.K. Lin, M. Havashi, C.Y. Zhu, and S.H. Lin	275
ON THE KRAMERS VERY LOW DAMPING ESCAPE RATE FOR POINT PARTICLES AND CLASSICAL SPINS	393
Declan J. Byrne, William T. Coffey, William J. Dowling, Yuri P. Kalmykov, and Serguey V. Titov	
Author Index	461
Subject Index	499

PHASE SPACE APPROACH TO SOLVING THE SCHRÖDINGER EQUATION: THINKING INSIDE THE BOX

DAVID J. TANNOR, NORIO TAKEMOTO, and ASAF SHIMSHOVITZ

Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100 Israel

CONTENTS

1

- I. Introduction
- II. Theory
 - A. von Neumann Basis on the Infinite Lattice
 - B. Fourier Method
 - C. The Periodic von Neumann Basis (pvN)
 - D. Biorthogonal von Neumann Basis Set (bvN)
 - E. Periodic von Neumann Basis with Biorthogonal Exchange (pvb)
- III. Application to Ultrafast Pulses
- IV. Applications to Quantum Mechanics
 - A. Time-independent Schrödinger Equation (TISE)
 - 1. Formalism
 - 2. 1D Applications
 - 3. Multidimensional Applications
 - 4. Scaling of the Method with *h* and with Dimensionality
 - 5. Wavelet Generalization
 - B. Time-dependent Schrödinger Equation (TDSE)
- V. Applications to Audio and Image Processing
- VI. Conclusions and Future Prospects

Acknowledgments

References

ENTROPY-DRIVEN PHASE TRANSITIONS IN COLLOIDS: FROM SPHERES TO ANISOTROPIC PARTICLES

MARJOLEIN DIJKSTRA

Soft Condensed Matter group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

- I. Introduction
- II. Predicting Candidate Crystal Structures
- III. Free-Energy Calculations
 - A. Fluid Phase
 - B. Crystal Phase
 - C. Plastic Crystal Phases
 - D. Orientationally Ordered Crystal Phases
- IV. Bulk Phase Diagram and Kinetic Pathways
 - A. Mapping Out Phase Diagrams
 - B. Nucleation, Gelation, and Glass Transition
- V. Phase Diagrams of Binary Hard-Sphere Mixtures
- VI. Phase Diagrams of Anisotropic Hard Particles
 - A. Dumbbells
 - B. Snowman-shaped Particles
 - C. Asymmetric Dumbbell Particles
 - D. Spherocylinders
 - E. Ellipsoids
 - F. Cut-spheres
 - G. Oblate Spherocylinders
 - H. Cubes
 - I. Superballs
 - J. Bowl-shaped Particles
- VII. Entropy Strikes Back Once More
- Acknowledgments
- References

SUB-NANO CLUSTERS: THE LAST FRONTIER OF INORGANIC CHEMISTRY

ANASTASSIA N. ALEXANDROVA and LOUIS-S. BOUCHARD

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095-1569, USA California NanoSystems Institute, Los Angeles, CA, 90095, USA

- I. Introduction
- II. Chemical Bonding Phenomena in Clusters
 - A. Multiple Aromaticity and Antiaromaticity (σ-, π-, δ-) in 2D and 3D
 1. 3D Aromaticity
 - B. Covalency in Clusters and its Conflict with Aromaticity
 - C. Ionic Bonding and its Support for Stabilizing Bonding Effects
 - D. Super-Atom Model
- III. Cluster-Based Technologies and Opportunities
 - A. New Inorganic Ligands and Building Blocks for Materials
 - B. Superconductivity in Metal Clusters
 - C. Cluster Motors
 - D. Clusters in Catalysis
- IV. Conclusions
- Acknowledgments
- References

SUPERCOOLED LIQUIDS AND GLASSES BY DIELECTRIC RELAXATION SPECTROSCOPY

RANKO RICHERT

Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-1604, USA

- I. Introduction
- II. Permittivity Fundamentals
 - A. Steady State Equations 1. Linear Regime
 - 1. Linear Regime
 - 2. Nonlinear Regime B. Time-Domain Relations
 - C. Frequency-Domain Relations
 - D. Fluctuations and Noise
- III. Response Functions
 - A. The Debye Response
 - B. Dispersive Response Functions
 - 1. Superposition Approach
 - 2. Empirical Time-Domain Functions
 - 3. Empirical Frequency-Domain Functions
 - C. Conductivity
 - 1. DC Conductivity
 - 2. AC Conductivity
- IV. Linear Experimental Techniques
 - A. Time-Domain Methods
 - B. Thermally Stimulated Depolarization
 - C. Frequency-Domain Methods
 - D. Noise Measurements
 - E. Capacitors for Permittivity Measurements
 - F. Limitations from Blocking Electrodes
- V. Nonlinear Experimental Techniques
 - A. Large DC Fields
 - B. Large AC Fields
- C. Pump-Probe Techniques
- VI. Applications
 - A. Static Properties

- B. Dynamic Properties: Equilibrium
 - 1. Pure Systems
 - 2. Mixtures
- C. Dynamic Properties: Nonequilibrium
- D. Conductivity
- E. Local Detection
- F. Heterogeneous Dielectrics/Confinement
- G. Nonlinear Experiments
- H. Relation to Other Variables VII. Concluding Remarks and Outlook

Acknowledgments

References

CONFINED FLUIDS: STRUCTURE, PROPERTIES AND PHASE BEHAVIOR

G. ALI MANSOORI¹ and STUART A. RICE²

¹Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607-7052, USA ²Department of Chemistry and the James Franck Institute, The University of

Chicago, Chicago, IL 60637, USA

- I. Introduction
- II. Macroscopic Description of Nanoconfined Fluids
 - A. A Simple Equation of State
 - B. The Local Pressure Profile of a Nanoconfined Fluid
 - C. The Hard-sphere and Perturbed Hard-sphere Fluids
- III. The Density Functional Theory Description of Confined Fluids
 - A. General Remarks
 - B. Density Distribution and Local Pressure Tensor in a Nanoconfined Hard-sphere Fluid
 - C. Confined Fluids With Attractive and Repulsive Intermolecular Interactions
- IV. Structure and Phase Behavior in Confined Colloid Suspensions
 - A. Quasi-One-Dimensional Systems
 - B. Two-Dimensional Systems: General Remarks
 - C. One-Layer Quasi-Two-Dimensional Systems: Some Details
 - D. Multi-Layer Quasi-Two-Dimensional Systems: Some Details
 - E. A 2D Model Molecular System
- V. Nanoconfined Water
 - A. Nanoconfined Water Between Smooth Walls
 - B. Nanoconfined Water Between Structured Walls
 - C. Water Confined in Carbon Nanotubes
 - D. Does Water Confined in a SWCNT Exhibit a Solid-Liquid Critical Point?
 - E. Water Confined by Hydrophilic Walls
- VI. Epilogue
- References

THEORIES AND QUANTUM CHEMICAL CALCULATIONS OF LINEAR AND SUM-FREQUENCY GENERATION SPECTROSCOPIES, AND INTRAMOLECULAR VIBRATIONAL REDISTRIBUTION AND DENSITY MATRIX TREATMENT OF ULTRAFAST DYNAMICS

L. YANG¹, Y.L. NIU², C.K. LIN³, M. HAYASHI³, C.Y. ZHU⁴, and S.H. LIN⁴

 ¹Institute of Theoretical and Simulation Chemistry, Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin, China
 ²The State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
 ³Condensed Matter Center, National Taiwan University, Taipei, Taiwan
 ⁴Department of Applied Chemistry, National China, Tang Heimanite

⁴Department of Applied Chemistry, National Chiao-Tung University, Hsinchu, Taiwan

CONTENTS

I. Introduction

- II. Recent Developments of Spectroscopies and Dynamics of Molecules
 - A. Anharmonic Effect of $S_1 \leftrightarrow S_0$ of Pyridine
 - B. Anharmonic Effect for $S_1 \leftrightarrow S_0$ of Pyrimidine
 - C. Radiative and Nonradiative $S_1 \leftrightarrow S_0$ of Fluorescence
- D. Spectroscopies and Dynamics of Pyrazine
- III. Theory and Applications of SFG
 - A. Introduction
 - B. Theory-Susceptibility Method
 - C. Vibrational Sum-Frequency Generation
 - D. Electronic Sum-Frequency Generation
 - E. Applications
 - 1. Applications to Water Interface
 - 2. Applications to Dye-Sensitized Solar Cells
 - 3. Applications to Biosciences

- IV. Intramolecular Vibrational Redistribution
 - A. Introduction
 - B. Computational Details
 - C. Intramolecular Vibrational Energy Transfer Theory $(D^*A \rightarrow DA^*)$
 - D. Ab Initio Methods
 - E. Results and Discussions
 - F. Water Clusters
- V. Ultrafast Dynamics and Density Matrix Method
 - A. Introduction
 - B. Bixon-Jortner Model
 - C. General Model

References

296

ON THE KRAMERS VERY LOW DAMPING ESCAPE RATE FOR POINT PARTICLES AND CLASSICAL SPINS

DECLAN J. BYRNE¹, WILLIAM T. COFFEY², WILLIAM J. DOWLING², YURI P. KALMYKOV³, and SERGUEY V. TITOV⁴

¹School of Physics, University College Dublin, Belfield, Dublin 4, Ireland ²Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland

 ³Laboratoire de Mathématiques et Physique, Université de Perpignan Via Domitia, 54, Avenue Paul Alduy, F-66860 Perpignan, France
 ⁴Kotel'nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Vvedenskii Square 1, Fryazino, Moscow Region, 141190, Russian Federation

- I. Introduction
- II. The Contribution of Kramers to Escape Rate Theory
 - A. IHD or Spatially-Controlled Diffusion Escape Rate
 - B. VLD or Energy-Controlled Diffusion Escape Rate
 - C. Connection of the VLD Rate with the High Frequency Resonance Absorption
 - D. Connection of the VLD Rate with Mel'nikov's Solution of the Kramers Turnover Problem
- III. Energy-Controlled Diffusion Equation for Particles with Separable and Additive Hamiltonians
 - A. Mean Energy Loss per Cycle of a Lightly Damped Particle
 - B. The Lightly Damped Langevin Equation
 - C. The Fokker–Planck Equation
 - D. Reducing the Fokker-Planck Equation to a One-Dimensional Equation in the Energy
 - E. Very Low Damping Escape Rate
- F. Comparison of VLD Escape Rate with Longest Relaxation Time Solutions
- IV. Energy-Controlled Diffusion of Classical Spins
 - A. Magnetization Evolution Equations: Brown's Langevin and Fokker–Planck Equations
 - B. Undamped Motion of Classical Spins

DECLAN J. BYRNE ET AL.

- C. Mean Energy Loss per Cycle of a Stoner-Wohlfarth Orbit
- D. Stochastic Motion of Classical Spins in the VLD Limit
- E. Fokker–Planck Equation
- F. Energy Diffusion Equation
- G. Very Low Damping Escape Rate
- H. Reversal Time and Escape Rate for Biaxial and Uniaxial Anisotropies
- V. Conclusion
- Appendix A: Longest Relaxation Time for a Double-Well Potential, Eq. (13), in the VLD

Limit

Appendix B: Undamped Limit for Biaxial Anisotropy References