CONTENTS

Preface		vii	
Fu	Future Contributions		ix
Со	ntribu	itors	xiii
1.	Gau Me Cor	ussian Beam Propagation in Inhomogeneous Nonlinear dia. Description in Ordinary Differential Equations by nplex Geometrical Optics	1
	Paw	el Berczynski, Slawomir Marczynski	
	1.	Introduction	2
	2.	CGO: Fundamental Equations, Main Assumptions, and Boundary	
		of Applicability	6
	3.	Gaussian Beam Diffraction in Free Space. CGO Method and Classical	
		Diffraction Theory	11
	4.	Un-Axis Propagation of an Axially Symmetric Gaussian Beam in Smoothly	15
	5.	Generalization of the CGO Method for Nonlinear Inhomogeneous	15
		Media	18
	б.	Self-Focusing of an Axially Symmetric Gaussian Beam in a Nonlinear	
		Medium of the Kerr Type. The CGO Method and Solutions of the	
		Nonlinear Parabolic Equation	20
	7.	Self-Focusing of Elliptical GB Propagating in a Nonlinear Medium of the	
	_	Kerr Type	21
	8.	Rotating Elliptical Gaussian Beams in Nonlinear Media	23
	9.	Orthogonal Ray-Centered Coordinate System for Rotating Elliptical	
		a Nonlinear Inhomogeneous Medium	26
	10.	Complex Ordinary Differential Riccati Equations for Elliptical Rotating	20
		GB Propagating Along a Curvilinear Trajectory in a Nonlinear	
		Inhomogeneous Medium	28
	11.	Ordinary Differential Equation for the Complex Amplitude and Flux	
		Conservation Principle for a Single Rotating Elliptical GB Propagating	
		in a Nonlinear Medium	32
	12.	Generalization of the CGO Method for N-Rotating GBs Propagating	
	10	Along a Helical Ray in Nonlinear Graded-Index Fiber	33
	13.	Single-Kotating GB. Evolution of Beam Cross Section and Wave-Front	26
			30

v

	14. Pair of Rotating GBs15. Three- and Four-Rotating GBs16. ConclusionReferences	48 75 106 109
2.	Single-Particle Cryo-Electron Microscopy (Cryo-EM): Progress, Challenges, and Perspectives for Further Improvement David Agard, Yifan Cheng, Robert M. Glaeser, Sriram Subramaniam	113
	 Introduction Going Beyond Large Particles with High Symmetry: Defining the Problem Perspectives for Further Improvement of Single-Particle Cryo-EM Summary: High-Resolution Structure Analysis by Cryo-EM Seems to be 	114 117 131
	Rapidly Approaching its Full Potential Acknowledgments References	134 135 135
3.	Morphological Amoebas and Partial Differential Equations Martin Welk, Michael Breuß	139
	 Introduction Discrete Amoeba Algorithms Continuous Amoeba Filtering Space-Continuous Analysis of Amoeba Filters Presmoothing and Amoeba Filters Experiments Conclusion Appendix References 	140 147 155 159 187 191 198 200 208
Сс	ntents of Volumes 151–184	213

Gaussian Beam Propagation in Inhomogeneous Nonlinear Media. Description in Ordinary Differential Equations by Complex Geometrical Optics

Pawel Berczynski¹, Slawomir Marczynski²

¹Institute of Physics, West Pomeranian University of Technology, Szczecin 70-310, Poland ²Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin 70-310, Poland

Contents

1.	Introduction	2
2.	CGO: Fundamental Equations, Main Assumptions, and Boundary of Applicability	6
3.	Gaussian Beam Diffraction in Free Space. CGO Method and Classical Diffraction	
	Theory	11
4.	On-Axis Propagation of an Axially Symmetric Gaussian Beam in Smoothly	
	Inhomogeneous Media	15
	4.1 First-Order Ordinary Differential Equation for Complex Parameter B	15
	4.2 The Second-Order Ordinary Differential Equation for GB Width Evolution in an	
	Inhomogeneous Medium	16
	4.3 The First-Order Ordinary Differential Equation for the GB Complex Amplitude	17
	4.4 The Energy Flux Conservation Principle in GB Cross Section	18
5.	Generalization of the CGO Method for Nonlinear Inhomogeneous Media	18
б.	Self-Focusing of an Axially Symmetric Gaussian Beam in a Nonlinear Medium of the	
	Kerr Type. The CGO Method and Solutions of the Nonlinear Parabolic Equation	20
7.	Self-Focusing of Elliptical GB Propagating in a Nonlinear Medium of the Kerr Type	21
8.	Rotating Elliptical Gaussian Beams in Nonlinear Media	23
9.	Orthogonal Ray-Centered Coordinate System for Rotating Elliptical Gaussian Beams	
	Propagating Along a Curvilinear Trajectory in a Nonlinear Inhomogeneous Medium	26
10	Complex Ordinary Differential Riccati Equations for Elliptical Rotating GB	
	Propagating Along a Curvilinear Trajectory in a Nonlinear Inhomogeneous Medium	28
11	. Ordinary Differential Equation for the Complex Amplitude and Flux Conservation	
	Principle for a Single Rotating Elliptical GB Propagating in a Nonlinear Medium	32
12	. Generalization of the CGO Method for N-Rotating GBs Propagating Along a Helical	
	Ray in Nonlinear Graded-Index Fiber	33
13	5. Single-Rotating GB. Evolution of Beam Cross Section and Wave-Front Cross Section	36
14	· Pair of Rotating GBs	48

1

2	Pawel Berczynski and Slawomir Marczynski	
15. Three- and Four-Rotating GBs	75	
16. Conclusion	106	
References	109	

Single-Particle Cryo-Electron Microscopy (Cryo-EM): Progress, Challenges, and Perspectives for Further Improvement

David Agard¹, Yifan Cheng², Robert M. Glaeser^{3,*},

Sriram Subramaniam⁴

¹HHMI and the Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA

²Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
 ³Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
 ⁴Laboratory for Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
 *Corresponding author: E-mail: rmglaeser@lbl.gov

Contents

1.	Intro	oduction	114
	1.1	Single-Particle Cryo-EM has Experienced a Sudden Improvement in	
		What Can Be Accomplished	114
	1.2	Single-Particle Cryo-EM is Now an Attractive Complement to X-Ray	
		Crystallography for Determining High-Resolution Structures of	
		Large Complexes	116
	1.3	Lessons Learned from the EM of Ordered Arrays and Large Particles	
		with High Symmetry	117
2.	Goi	ng Beyond Large Particles with High Symmetry: Defining the Problem	117
	2.1	Specimen Heterogeneity Can Limit Resolution	118
		2.1.1 The Available Sample may be Conformationally Heterogeneous	118
		2.1.2 Structural Damage also Can Occur During Preparation of EM Grids	119
	2.2	The Ice Thickness of the Sample Might be too Great	120
		2.2.1 Excessive Variation in Z-Height Position Is a Problem When the	
		Ice Thickness Is Too Great	120
		2.2.2 A Shallow Depth of Field Need not be a Limitation for Highly	
		Symmetric Structures	121
		2.2.3 The SNR Is Diminished as the Fraction of Inelastically Scattered	
		Electrons Increases	121
	2.3	The SNR in Images of Smaller Particles Can Be Inherently too Low to Support	
		Refinement to Higher Resolution	123
	2.4	Nonideal Imaging Conditions Can Limit Resolution	124

		2.4.1 High-Resolution Features Can Be Partially or Completely Lost due to	
		"Delocalization"	124
		2.4.2 Off-Axis Image Coma Can Introduce Significant Phase Errors at	
		High Resolution	126
	2.5	Data Processing and Computation are Always Important Issues	128
		2.5.1 Beam-Induced Movement Should be Corrected as Fully as Possible	128
		2.5.2 CTF Correction Must be Made with Sufficient Accuracy	129
3.	Per	spectives for Further Improvement of Single-Particle Cryo-EM	131
	3.1	The Current State-of-the-Art Is Still Well Short of the Physical Limit	131
		3.1.1 Cameras Can Be Improved	131
		3.1.2 Phase Plates Can Improve Contrast at Low Resolution	132
	3.2	Two Further Issues Need to be Addressed in Order to Achieve	
		Resolutions Higher than 0.3 nm	132
		3.2.1 Beam-Induced Tilt May Limit the Achievable Resolution	132
		3.2.2 Data Collection and Merging Data May Have to be Modified to Deal with	
		Curvature of the Ewald Sphere	133
4.	Sun	nmary: High-Resolution Structure Analysis by Cryo-EM Seems to be	
	Rap	idly Approaching its Full Potential	134
Ac	:kno	wledgments	135
Re	fere	nces	135

Morphological Amoebas and Partial Differential Equations

Martin Welk¹, Michael Breuß²

¹UMIT, Biomedical Image Analysis Division, Eduard-Wallnoefer-Zentrum 1, 6060 HALL (Tyrol), Austria ²Mathematical Image Analysis Group, Saarland University, Campus E1.1, 66041 Saarbrücken (Germany)

Contents

1. Introduction	140
2. Discrete Amoeba Algorithms	147
2.1 Discrete Amoeba Construction	147
2.2 Iterated Amoeba Median Filtering Algorithm	149
2.3 Dilation, Erosion, and Quantiles	150
2.4 M-Smoothers	151
2.5 Multivariate Median Filters	152
2.6 Amoeba Active Contour Algorithm	153
3. Continuous Amoeba Filtering	155
3.1 Continuous Amoeba Construction	155
3.2 Continuous Amoeba Median Filtering	157
3.3 Continuous Dilation, Erosion, and Quantile Filters	157
3.4 Continuous M-Smoothers	157
3.5 Multivariate Median Filtering on a Continuous Domain	158
3.6 Amoeba Active Contours Filtering	158
4. Space-Continuous Analysis of Amoeba Filters	159
4.1 PDE for Amoeba Median Filtering	159
4.1.1 First Proof of Theorem 1	159
4.1.2 Second Proof of Theorem 1	166
4.2 Discussion of Amoeba Metrics	171
4.3 Analysis of Amoeba Dilation, Erosion, and Quantile Filters	174
4.4 Analysis of Amoeba M-Smoothers	176
4.5 Analysis of Multivariate Median Filtering	179
5. Presmoothing and Amoeba Filters	187
5.1 The Test Case	188
5.2 The Self-Snakes Test	188
5.3 The Amoeba Test	189
6. Experiments	191
6.1 Experiments on Amoeba Median Filtering	191
6.2 Experiments on Amoeba Quantile Filtering	195

6.3 Experiments on Amoeba Mode Filtering	196
6.4 Experiments on Amoeba Active Contours	196
7. Conclusion	198
Appendix	
A.1 Derivation of l_3 from Subsection 4.1	200
A.2 Integrals from Subsection 4.4	202
A.3 Integral Approximation from Subsection 4.5	204
References	208