Contents

1	Dyn	amical Systems	
	1.1	Introduction	
	1.2	Dynamical Systems and Mathematical Models	
	1.3	Kinematic Interpretation of a System of Differential	
		Equations	
	1.4	Definition of a Dynamical System: Classification	
	1.5	Phase Portraits of Typical Oscillatory Systems	
		1.5.1 Conservative Oscillator	
		1.5.2 Damped Linear Oscillator	
	1.6	Self-Sustained Oscillatory Systems	
	1.7	Regular and Chaotic Attractors	
	1.8	Discrete-Time Systems: Return Maps	
		1.8.1 Stretching Map	
		1.8.2 Logistic Map	
		1.8.3 Sine Map	
		1.8.4 Henon Map	
		1.8.5 Lozi Map	
	1.9	Summary	
	Refe	rences	
2	Stab	ility of Dynamical Systems: Linear Approach	
	2.1	Introduction	
	2.2	Definition of Stability	
	2.3	Linear Analysis of Stability	
		2.3.1 Stability of Solutions of a First-Order	
		Differential Equation	
		2.3.2 Stability of a Dynamical System in \mathbb{R}^N	
	2.4	Stability of Phase Trajectories in Discrete-Time Systems	
	2.5	Summary	
	Refe	rences	

х

Contents

3	Bifu	ations of Dynamical Systems 3	37
	3.1	Introduction 3	37
	3.2	Double Equilibrium Bifurcation	<u>89</u>
	3.3	Soft and Hard Bifurcations: Catastrophes 4	0
	3.4	Triple Equilibrium Bifurcation 4	1
	3.5	Andronov–Hopf Bifurcation 4	13
	3.6	Bifurcations of Limit Cycles 4	4
		3.6.1 Saddle-Node Bifurcation 4	4
		3.6.2 Period-Doubling Bifurcation 4	15
		3.6.3 Two-Dimensional Torus Birth (Death)	
		Bifurcation (Neimark–Saker Bifurcation) 4	16
		3.6.4 Symmetry-Breaking Bifurcation 4	17
	3.7	Nonlocal Bifurcations: Homoclinic Trajectories and Structures 4	18
		3.7.1 Separatrix Loop of a Saddle Equilibrium Point	18
		3.7.2 Saddle-Node Separatrix Loop 5	50
		3.7.3 Homoclinic Trajectory Appearance	
		of a Saddle Limit Cycle	51
	3.8	Summary	52
	Refe	nces	52
4	Dyna	nical Systems with One Degree of Freedom	53
	4.1	Introduction	53
	4.2 Limit Sets and Attractors in the Phase Plane:		
		The Andronov–Poincaré Limit Cycle 5	54
	4.3	Structural Stability of Systems in the Phase Plane:	
		Andronov–Pontryagin Systems	56
		4.3.1 Definition of Robustness of a Dynamical System 5	56
		4.3.2 Definition of Structural Stability	
		of a Dynamical System	57
		4.3.3 Andronov–Pontryagin Theorem	57
	4.4	Oscillators with One Degree of Freedom	58
		4.4.1 Froude Pendulum 5	58
		4.4.2 Fastened Weight on a Moving Belt	50
		4.4.3 <i>RC</i> -Oscillator with Wien Bridge	52
		4.4.4 Oscillatory Circuit with Active Nonlinear Element 6	53
	4.5	Analysis of the van der Pol Equation: Onset	
		of Self-Sustained Oscillations	55
		4.5.1 Amplitude and Phase Equations	
		for the Self-Sustained Oscillator	56
	4.6	Oscillator with Hard Excitation of Self-Sustained Oscillations	59
		4.6.1 Analysis of the Stability of Equilibrium States	59
		4.6.2 Truncated Equations for the Amplitude	
		and Phase for the Oscillator with Hard Excitation	70

		4.6.3	Bifurcation Diagram of the Oscillator	
			with Hard Excitation	71
	4.7	Summa	ary	73
	Refe	rences		73
5	Syste	ems with	Phase Space Dimension $N \geq 3$:	
	Dete	rministic	c Chaos	75
	5.1	Introdu	lection	75
	5.2	Determ	ninism and Chaos for Beginners	76
		5.2.1	Determinism	76
		5.2.2	Chaos	77
		5.2.3	Stability and Instability	77
		5.2.4	Nonlinearity	78
		5.2.5	Instability and Nonlinear Restriction	78
		5.2.6	Deterministic Chaos	80
	5.3	Mixing	and Probabilistic Properties of Deterministic Systems	81
	5.4	Is Dete	erministic Chaos a Mathematical Oddity	
		or a Ty	pical Property of the Material World?	83
	5.5	Strange	e Chaotic Attractors	84
	5.6	Strange	e Nonchaotic and Chaotic Nonstrange Attractors	85
		5.6.1	Chaotic Nonstrange Attractors	86
		5.6.2	Strange Nonchaotic Attractors	88
		5.6.3	Geometric Characteristics of SNAs	88
		5.6.4	LCE Spectrum of SNAs	89
		5.6.5	Spectrum and Autocorrelation Function	89
	5.7	Summa	ary	90
	Refe	rences		91
6	Fron	n Order 1	to Chaos: Bifurcation Scenarios (Part I)	93
	6.1	Introdu	letion	93
	6.2	Transiti	ion to Chaos via a Cascade of Period-Doubling	
		Bifurca	tions: Feigenbaum Universality	94
	6.3	Crisis a	and Intermittency	102
7	Fnon	. Onder (to Chaose Bifurgation Secondaries (Bart II)	107
/	F F0 H 7 1	Doute f	to Chaos: Differentiation Scenarios (Part II)	107
	7.1		Two Dimensional Torus Destruction	107
		7.1.1	Circle Mony Universal Decularities of Seft	108
		1.1.2	Transition from Obscingfield site to Chase	111
	7 2	Douto t	Chaos via Ergodia Tarra Destruction. Chaos	111
	1.2	Nonstro	o Chaos via Eigodic Torus Destruction: Chaotic	115
	72	Summe		115
	7.5 Dofor	Summa	иу	121
_	Reiel	ciices		122
8	Robu	ist and N	Ionrobust Dynamical Systems: Classification	
	of At	tractor '	Types	123
	8.1	Introdu	ction	123
	8.2	Homoc	linic and Heteroclinic Curves	124

	8.3	Structurally Stable Systems in \mathbb{R}^N , $N \ge 3$: Hyperbolicity	126		
		8.3.1 Morse–Smale Systems	126		
		8.3.2 Hyperbolic Sets	127		
		8.3.3 Anosov Systems	128		
		8.3.4 Smale Systems with Nontrivial Hyperbolicity:			
		Strange Attractors	129		
	8.4	Structurally Unstable Dynamical Systems	130		
	8.5	Quasihyperbolic Attractors: Lorenz-Type Attractors	131		
		8.5.1 Quasihyperbolic Attractor in the Lozi Map	132		
		8.5.2 The Lorenz Attractor	134		
	8.6	Nonhyperbolic Attractors and Their Properties	136		
		8.6.1 Nonhyperbolic Attractor in the Henon Map	137		
		8.6.2 Nonhyperbolic Attractor in the Oscillator			
		with Inertial Nonlinearity	141		
	8.7	Summary	142		
	Refere	ences	143		
9	Chara	acteristics of Poincaré Recurrences	145		
-	9.1	Introduction	145		
	9.2	Local Approach	146		
		9.2.1 Kac's Lemma	146		
		9.2.2 Exponential Law for Distribution of First			
		Recurrence Times	148		
		9.2.3 Numerical Examples	148		
	9.3	Global Approach: Afraimovich–Pesin Dimension			
		of Recurrence Times	151		
	9.4	Afraimovich-Pesin Dimension and Lyapunov Exponents	154		
	9.5	Summary			
	Refere	erence			
10	Encot	ala in Nanlingar Dynamics	157		
10	10 1	Introduction	157		
	10.1	Definition of a Fractal: Classic Examples of Fractal Sets	158		
	10.2	The Nature of Fractality in Dynamical Systems	162		
	10.5	Fractal Dimensions of Sets	165		
	10.4	10.4.1 The Hausdorff_Besicovitch Dimension	165		
		$10.4.2$ Capacity D_c	166		
		10.4.3 Information Dimension D_1	167		
		10.4.4 Correlation Dimension D	168		
		10.4.5 Generalized Dimension D_{cor}	169		
		10.4.6 Lyapunov Dimension D_q	170		
	10.5	Relationship Between Different Dimensions	171		
	10.5	Summary	172		
	Refer	ences	172		

11	The A Self-S	Anishchenko–Astakhov Oscillator of Chaotic Sustained Oscillations	175
	11.1	Introduction	175
	11.2	Theodorchik's Oscillator	177
	11.3	Modification of the Oscillator with Inertial	
	1110	Nonlinearity: The Anishchenko–Astakhov Oscillator	182
		11.3.1 Periodic Regimes of Self-Sustained	102
		Oscillations and Their Rifurcations	18/
		11.3.2 Period-Doubling Bifurcations: Feigenbaum	104
		Universality	102
		11.2.2 Chaotia Attractor and Hamaelinia Trainstarias	192
		in the Opeilleter	104
	11.4		194
	11.4 D.C	Summary	200
	Refer	ences	201
12	Quas	iperiodic Oscillator with Two Independent Frequencies	203
	12.1	Introduction	203
	12.2	Methods for Realizing Two-Frequency Oscillations	
		and Their Properties	204
	12.3	Statement of Oscillator Equations	208
	12.4	Bifurcation Diagram of the Quasiperiodic Oscillator	211
	12.5	Two-Dimensional Torus-Doubling Bifurcation	212
	12.6	Summary	215
13	Syncl	hronization of Periodic Self-Sustained Oscillations	217
	13.1	Introduction	217
	13.2	Forced Synchronization of the van der Pol Oscillator:	
		Truncated Equations for the Amplitude and Phase	218
		13.2.1 Analysis of Synchronization in the Phase	
		Approximation	221
		13.2.2 Bifurcational Analysis of the System	
		of Truncated Equations	225
		13.2.3 Bifurcational Analysis of the Nonautonomous	
		van der Pol Oscillator	230
	13.3	Mutual Synchronization: Effect of Oscillation Death	
		in Dissipatively Coupled van der Pol Oscillators	236
	13.4	Summary	242
	Refer	ences	243
14	Syncl	hronization of Two-Fraguency Self-Systemad Accillations	245
14	14 1	Introduction	245
	14.2	Influence of an External Periodic Force on a Resonant	245
	17.4	Limit Cycle in a System of Coupled Oscillators	245
	1/2	Basic Bifurcations of Quasipariadia Desimas When	243
	14.3	Suphronizing a Pasonant Limit Cuala	240
		14.2.1 Dopuliarities in the Sunchronization	248
		14.5.1 recultarities in the Synchronization	051
		of Resonant Limit Cycles	251

		14.3.2	Phase Synchronization of a System	
			of Coupled van der Pol Oscillators	251
			by an External Harmonic Signal	254
		14.3.3	Bifurcations of Equilibrium States	257
		14.3.4	Bifurcations of Invariant Curves	260
		14.3.5	Synchronization of Two-Frequency	
			Oscillations in a Self-Sustained Quasiperiodic	
			Oscillator	263
	14.4	Summa	ıry	270
15	Syncl	ironizat	ion of Chaotic Oscillations	273
	15.1	Introdu	ction	273
	15.2	Phase-	Frequency Synchronization of Chaotic	
		Self-Su	stained Oscillations	274
	15.3	Experir	nental Investigation of Forced Synchronization	
	of an Oscillator with Spiral Chaos			
	154	Comple	ete Synchronization of Interacting Chaotic Systems	285
	15.4	Quantit	tative Characteristics of the Degree	
	15.5	Qualiti	heronization of Chaotic Self Sustained Oscillations	290
	15 6	of Sync	anonization of Chaotic Sen-Sustanied Oscinations	290
	15.6 Summary			