CONTENTS

Contributors to Volume 155 Preface to the Series				
By Michael F. Hagan				
Charges at Aqueous Interfaces: Development of Computational Approaches in Direct Contact with Experiment	69			
By Robert Vácha, Frank Uhlig, and Pavel Jungwirth				
SOLUTE PRECIPITATE NUCLEATION: A REVIEW OF THEORY AND SIMULATION ADVANCES	97			
By Vishal Agarwal and Baron Peters				
WATER IN THE LIQUID STATE: A COMPUTATIONAL VIEWPOINT	161			
By Toshiko Ichiye				
Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing	201			
By Ryan Babbush, Alejandro Perdomo-Ortiz, Bryan O'Gorman, William Macready, and Alan Aspuru-Guzik				
Author Index	245			
Subject Index	271			

MODELING VIRAL CAPSID ASSEMBLY

MICHAEL F. HAGAN

Department of Physics, Brandeis University, MS057, Waltham, MA 02454, USA

- I. Introduction
 - A. Virus Anatomies
 - B. Virus Assembly
 - 1. Experiments That Characterize Capsid Assembly
 - 2. Motivation for and Scope of Modeling
- II. Thermodynamics of Capsid Assembly
 - A. Driving Forces
 - B. Law of Mass Action
 - 1. Estimating Binding Energies from Experiments
- III. Modeling Self-Assembly Dynamics and Kinetics of Empty Capsids
 - A. Timescales for Capsid Assembly
 - 1. Scaling Estimates for Assembly Timescales
 - 2. Lag Times
 - 3. The Slow Approach to Equilibrium
 - B. Rate Equation Models for Capsid Assembly
 - C. Particle-Based Simulations of Capsid Assembly Dynamics
 - D. Conclusions from Assembly Dynamics Models
 - E. Differences Among Models
 - F. Higher T Numbers
 - 1. Structural Stability of Different Capsid Geometries
 - 2. Dynamics of Forming Icosahedral Geometries
- IV. Cargo-Containing Capsids
 - A. Structures
 - B. The Thermodynamics of Core-Controlled Assembly
 - C. Single-Stranded RNA Encapsidation
 - D. Dynamics of Assembly Around Cores
- V. Outlook

Advances in Chemical Physics, Volume 155, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

^{© 2014} John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

CHARGES AT AQUEOUS INTERFACES: DEVELOPMENT OF COMPUTATIONAL APPROACHES IN DIRECT CONTACT WITH EXPERIMENT

ROBERT VÁCHA¹, FRANK UHLIG², and PAVEL JUNGWIRTH²

¹National Centre for Biomolecular Research, Faculty of Science and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic

²Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6, Czech Republic

- I. Introduction
- II. Accounting for Polarizability Effects
 - A. Models with Explicit Polarization
 - B. Implicit Polarization via Charge Scaling
 - C. Beyond Conventional Force Fields
- III. Case Studies
 - A. Hydroxide at Aqueous Interfaces
 - B. Solvated Electron at the Surface of Water

IV. Outlook

Advances in Chemical Physics, Volume 155, First Edition. Edited by Stuart A. Rice and Agron R. Dinner

^{© 2014} John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

SOLUTE PRECIPITATE NUCLEATION: A REVIEW OF THEORY AND SIMULATION ADVANCES

VISHAL AGARWAL¹ and BARON PETERS^{1,2}

¹Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA ²Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA

- I. Introduction
- II. Classical Nucleation Theory
 - A. Homogeneous Nucleation
 - B. Heterogeneous Nucleation
 - C. Nucleation Theorem
- III. Two-Step Nucleation Theory
 - A. Metastable Fluid-Fluid Critical Points
 - B. Phenomenological Theories
 - C. Coupled Flux Theories and Concentration Fluctuation Gating
- IV. Simulation Challenges
 - A. Landau Free Energies and Rare Events
 - B. Kramers-Langer-Berezhkovskii-Szabo (KLBS) Theory
 - C. Nucleus Size in Simulations
 - D. Which Nucleus Size Metric?
 - E. Open versus Closed Systems
- V. Case Studies
 - A. Laser-Induced Nucleation
 - B. Nucleation of Methane Hydrates
 - C. Nucleation of Calcium Carbonate
- VI. Closing Remarks

Advances in Chemical Physics, Volume 155, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

^{© 2014} John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

WATER IN THE LIQUID STATE: A COMPUTATIONAL VIEWPOINT

TOSHIKO ICHIYE

Department of Chemistry, Georgetown University, Washington, DC 20057-1227, USA

- I. Introduction
- II. Potential Energy Functions for Liquid Water
 - A. Heuristic Models
 - B. Multisite Models
 - 1. Three-Site Models
 - 2. Four-Site Models
 - 3. Five-Site Models
 - 4. Six Sites and Beyond
 - C. Molecular Multipole Models
 - 1. The Multipole Expansion
 - 2. The Approximate Multipole Expansion
 - D. Atomic Multipole Models
 - E. Summary
- III. Multipoles
- IV. The Water Molecule in the Pure Liquid
 - A. Nuclear Geometry
 - B. Electron Density
 - C. Multipole Moments
 - D. Electrostatic Potential
 - E. Summary
- V. Liquid Water
 - A. Structure
 - B. Density
 - C. Thermodynamics
 - D. Dynamics
 - E. Dielectric Properties
 - F. Summary
- VI. Aqueous Solutions
 - A. Ionic Solvation
 - B. Hydrophobic Solvation
- VII. Conclusions

Advances in Chemical Physics, Volume 155, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

^{© 2014} John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

CONSTRUCTION OF ENERGY FUNCTIONS FOR LATTICE HETEROPOLYMER MODELS: EFFICIENT ENCODINGS FOR CONSTRAINT SATISFACTION PROGRAMMING AND QUANTUM ANNEALING

RYAN BABBUSH, ¹ ALEJANDRO PERDOMO-ORTIZ, ^{1,2} BRYAN O'GORMAN, ¹ WILLIAM MACREADY, ³ and ALAN ASPURU-GUZIK ¹

¹Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA ²NASA Ames Quantum Laboratory, Ames Research Center, Moffett Field, CA 94035, USA ³D-Wave Systems, Inc., 100-4401 Still Creek Drive, Burnaby, British Columbia V5C 6G9, Canada

- I. Introduction
 - A. Motivation and Background
 - B. Overview of Mapping Procedure
- II. The "Turn" Encoding of Self-Avoiding Walks
 - A. Embedding Physical Structure
 - B. "Turn Ancilla" Construction of E(q)
 - 1. Construction of $E_{\text{back}}(q)$
 - 2. Construction of $E_{\text{overlap}}(q)$ with Ancilla Variables
 - 3. Construction of $E_{\text{pair}}(\dot{q})$ with Ancilla Variables
 - C. "Turn Circuit" Construction of E(q)
 - 1. Sum Strings
 - 2. Construction of $E_{\text{overlap}}(q)$ with Circuit
 - 3. Construction of $E_{pair}(q)$ with Circuit
- III. The "Diamond" Encoding of SAWs
 - A. Embedding Physical Structure
 - B. Natively 2-Local E(q)
 - 1. Construction of $E_{one}(q)$
 - 2. Construction of $E_{\text{connect}}(q)$

Advances in Chemical Physics, Volume 155, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

^{© 2014} John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

- Construction of E_{overlap} (q)
 Construction of E_{pair} (q)
- IV. Pseudo-Boolean Function to W-SAT
 - A. MAX-SAT and W-SAT
 - B. Constructing WCNF Clauses
 - C. Solving SAT Problems
- V. W-SAT to Integer-Linear Programming
 - A. Mapping to ILP
 - B. Solving ILP Problems
- VI. Locality Reductions
- VII. Quantum Realization
 - A. Previous Experimental Implementation
 - B. Six-Unit Miyazawa-Jernigan Protein
 - 1. $E_{\text{back}}(q)$ for Six-Unit SAW on 2D Lattice
 - 2. $E_{\text{overlap}}(q)$ for Six-Unit SAW on 2D Lattice
 - 3. $E_{\text{pair}}(q)$ for MJ Model PSVKMA
 - 4. Setting λ Penalty Values
 - 5. Reduction to 2-Local

 - 6. QUBO Matrix and Solutions

VIII. Conclusions