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I. INTRODUCTION

Nature harvests solar energy with a remarkably high quantum efficiency, the
percentage of charge carriers created by photons. Recent spectroscopic experi-
ments [1-3] and theoretical models [4-13], provide strong evidence that efficient
light harvesting in nature occurs by a quantum mechanism involving sustained
electronic coherence [ 14] and entanglement [ 15,16] between chromophores. Quan-
tum coherence in the Fenna—Matthews—Olson (FMO) antennae complex of green

_—
Afivances in Chemical Physics, Volume 154: Quantum Information and Computation for Chemistry,
First Edition. Edited by Sabre Kais.

©2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc,

355



VIBRATIONAL ENERGY TRANSFER
THROUGH MOLECULAR CHAINS: AN
APPROACH TOWARD SCALABLE
INFORMATION PROCESSING

C. GOLLUB, P. VON DEN HOFF, M. KOWALEWSKI,
U. TROPPMANN, and R. DE VIVIE-RIEDLE

Department Chemie, Ludwig-Maximilians-Universitiit, Butenandt-Str. 11,
81377 Miinchen, Germany

1. Introduction
1I. Fundamentals of Quantum Dynamics and Coherent Control
A. Wavepacket Dynamics
1. Propagation in the Eigenstate Basis
2. Calculation of Eigenstates
B. Dissipative Dynamics
1. Density Matrix
2. Liouville-von Neumann Equation
3. Density Matrix Propagation
C. Optimal Control Theory
D. OCT-Frequency Shaping
III. Implementation of Quantum Information Processing
A. Molecular Quantum Computing
B. Approach for Quantum Information Processing with Molecular Vibrational Qubits
C. State Transfer and Quantum Channels
D. Dissipative Influence on Vibrational Energy Transfer Related to IVR
IV. Conclusions
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I. INTRODUCTION

Quantum information processing is a rapidly developing field and has entered
different areas in physics and chemistry. The first principal ideas came from the
Quantum optics community and considerable success was reported with cavity
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