Contents

Preface	V
Part One:	Polarizabilities and Hyperpolarizabilities of
	Dendritic Systems
	Masayoshi Nakano and Kizashi Yamaguchi
Part Two:	Molecules in Intense Laser Fields: Nonlinear
	Multiphoton Spectroscopy and Near-Femtosecond
	To Sub-Femtosecond (Attosecond) Dynamics 147
	André D. Bandrauk and Hirohiko Kono
Part Three:	Ultrafast Dynamics and non-Markovian
	Processes in Four-Photon Spectroscopy
	B. D. Fainberg

4

Contents

۱b	ostract	6
	Introduction	8
	Polarizabilities and Hyperpolarizabilities of Dendritic Aggregate Systems	11
	2.1. Aggregate Models	11
	2.2. Density Matrix Formalism for Molecular Aggregate under Time-Dependent	
	Electric Field	14
	2.3. Nonperturbative (Hyper)polarizabilities and Their Partition into the Contribution	
	of Exciton Generation	17
	2.4. Off-Resonant Polarizabilities of Dendritic Aggregates	20
	2.4.1. One-Exciton States and Their Spatial Contribution to α	21
	2.4.2. Effects of Intermolecular Interaction and Relaxation on the Spatial	
	Contribution of One-Exciton Generation to α	24
	2.4.3. Comparison of Polarizabilities of Dendritic Aggregates with Those of	
	One-Dimensional (Linear) and Two-Dimensional (Square-Lattice)	
	Aggregates	26
	2.5. Off-Resonant Second Hyperpolarizabilities of Dendritic Aggregates	28
	2.5.1. Two Types of Dendritic Aggregates with and without a Fractal Structure	28
	2.5.2. Spatial Contributions of One- and Two-Exciton Generations to γ of D10	30
	2.5.3. Effects of Intermolecular Interaction and Relaxation on the Spatial	
	Contributions on One- and Two-Exciton Generation to γ of D10	31
	2.5.4. Spatial Contributions on One- and Two-Exciton Generations to γ of D25	33
	2.5.5. Effects of Intermolecular Interaction and Relaxation on the Spatial	
	Contributions of One- and Two-Exciton Generations to γ of D25	34
	2.6. Near-Resonant Second Hyperpolarizabilities of Dendritic Aggregates	35
	2.7. Summary	37
i.	Polarizabilities and Hyperpolarizabilities of Dendrimers	41
	3.1. Cayley-Tree-Type Dendrimers with π -Conjugation	41
	3.2. Finite-Field Approach to Static (Hyper)polarizabilities	43
	3.3. Hyperpolarizability Density Analysis	47
	3.4. Size Dependencies of α and γ of Oligomer Models for Dendron Parts	53
	3.4.1. Model Oligomers	53
	3.4.2. Comparison of the α and γ Values and Their Density Distributions of	
	Stilbene Calculated by the PPP CHF Method with Those by the B3LYP	
	Method	55
	3.4.3. Size Dependencies of α and γ for Model Oligomers	57
	3.4.4. α and γ Density Distributions for Model Oligomers	59

	 3.5. Second Hyperpolarizabilities of Cayley-Tree-Type Phenylacetylene Dendrimers 3.5.1. Calculation of γ of D25 3.5.2. Comparison of the γ Value and γ Density Distribution of Diphenylacetylene Calculated by the INDO/S CHF Method with Those 	62 63
	by the B3L YP Method	63
	3.5.3. γ and γ Densities of D25	64
	3.6. Summary	67
4.	Extensions of Models and Analysis	69
	4.1. Master Equation Approach Involving Explicit Exciton-Phonon Coupling	69
	4.1.1. Model Hamiltonian Involving Exciton-Phonon Coupling	70
	4.1.2. Master Equation Approach	74
	4.2. Analytical Expression of Hyperpolarizability Density	79
	4.2.1. Analytical Formula of Hyperpolarizability Density	81
	4.2.2. Imγ Density of <i>trans</i> -Stilbene	89
	4.3. Summary	91
5.	Concluding Remarks	92
Ac	knowledgments	95
Re	rerences remains a second of the second of t	96

Contents

1 Introduction 221

2 Hamiltonian of chromofore molecule in solvent and basic

n	nethods of the resonance four-photon spectroscopy	226	6 Four-photo	n spectroscopy of superconductors	27 1
3 (Calculation of nonlinear polarization	233	7 Ultrafast s	pectroscopy with pulses longer than reciprocal	l
4	tochastic models in transient RFPS 1 Non-Markovian relaxation effects in two-pulse RFPS with Gaussian random modulation of optical transition frequency 2 Transient four-photon spectroscopy of near or overlapping resonances in the presence of spectral exchange 3 Non-Markovian relaxation effects in three-pulse RFPS		7.1 Theory reversil 7.1.1 7.1.2	of the absorption spectrum of transient RFPS with pulses long compared with ole electronic dephasing	282
	Non-Markovian theory of steady-state RFPS 1 Introduction and the cubic susceptibility in the case of	255	7.2 Nonline	Non-Condon terms	
5	Gaussian-Markovian random modulation of an electronic transition		7.2.2	Classical nature of the LF vibration system and the exponential correlation function	
5	.3 Cubic susceptibility for detunings larger than reciprocal correlation time		8 Experiments 8.1 Introdu	tal study of ultrafast solvation dynamics $oxed{a}$ action	30 0

	8.3	Method of data analysis $\ldots \ldots \ldots \ldots \ldots \ldots$	309
	8.4	Discussion	314
9	Pro	spect: Spectroscopy of nonlinear solvation	318
	9.1	Four-time correlation functions related to definite electronic	
		states	321
	9.2	Simulation of transient four-photon spectroscopy signals	
		for nonlinear solvation	324
	9.3	Spectral moments of the non-equilibrium absorption and	
		luminescence of a molecule in solution	331
	9.4	Broad and featureless electronic molecular spectra	334
	9.5	Time resolved luminescence spectroscopy	336
	9.6	Time resolved hole-burning study of nonlinear solvation $$	337
	9.7	Stochastic approach to transient spectroscopy of nonlinear	
		solvation dynamics	339
	9.8	Summary	344
10	Ack	knowledgments	350
A	App	pendix	350