Contents

Preface					
1	Mat	hemati	cal Formulations for Electromagnetic Fields	1	
	1.1		ninistic Vector Partial Differential System of the		
		Electro	omagnetic Fields	1	
		1.1.1	Maxwell's Equations	1	
		1.1.2	Constitutive Relations	3	
		1.1.3	Boundary Conditions	3	
		1.1.4	Maxwell's Equations in the Frequency Domain	5	
		1.1.5	Uniqueness Theorem	6	
	1.2	Vector	Wave Equation of the Electromagnetic Fields	8	
	1.3	Vector	Integral Equation of the Electromagnetic Fields	8	
		1.3.1	Equivalence Principle	9	
		1.3.2	Solution of Maxwell's Equation in Free Space	11	
		1.3.3	Integral Equations of Metallic Scattering Problems	14	
		1.3.4	Integral Equation of Homogeneous Dielectric		
			Scattering Problems	16	
		1.3.5	Integral Equation of Inhomogeneous Dielectric		
			Scattering Problems	19	
		1.3.6	Integral Equations of Scattering in Layered Medium	20	
	Refe	erences		28	
2	Method of Moments				
	2.1	Scatter	ring from 3D PEC Objects	29	
		2.1.1	Formulation of the Problem	30	
		2.1.2	Discretization in MoM	30	
		2.1.3	Choice of Basis and Testing Functions	31	
		2.1.4	Discretized Integral Equation (DIE) and the		
			Numerical Behavior Analysis	34	
		2.1.5	Handling of Singularity	36	

vi Contents Contents vii

		2.1.6	Comparison of EFIE and MFIE	71
		2.1.7	Interior Resonance Problem	73
		2.1.8	Fast Multipole Method	74
		2.1.9	Calculation of Scattered Fields	86
		2.1.10	Writing Computer Program	89
		2.1.11	Numerical Examples	94
		2.1.12	Parallel Technology	100
		2.1.13	Strong Scalability	106
		2.1.14	Weak Scalability	107
	2.2	Scatter		
		Dielect	ric Objects	109
		2.2.1	Mathematic Formulation of the Problem	111
		2.2.2	Discretized Forms and Their Numerical Performance	112
		2.2.3	Numerical Examples	118
		2.2.4	Implementation of Single Integral Equation and the	
			Numerical Characteristics	122
	2.3	Scatter	ing from Three-Dimensional Inhomogeneous	
		Dielect	ric Objects	128
		2.3.1	Mathematic Formulation of the Problem	129
		2.3.2	Rooftop Basis Functions	130
		2.3.3	Discretization of the VIE	131
		2.3.4	Singularity Processing	134
		2.3.5	Fast Solution of the Discretized VIE	135
		2.3.6	Numerical Examples	136
	2.4	Essenti	al Points in MoM for Solving Other Problems	136
			Scattering from Two-Dimensional Objects	138
		2.4.2	Scattering from Periodic Structures	141
		2.4.3	Scattering from Two-and-Half-Dimensional Objects	144
		2.4.4	Radiation Problems	146
	Refe	erences		150
3	Fini	te-Elem	ent Method	153
	3.1		nodes Problems of Dielectric-Loaded Waveguides	153
			Functional Formulation	154
		3.1.2	Choice of Basis Functions	159
			Discretization of the Functional	161
		3.1.4	Imposition of the Boundary Condition	164
			Solution of the Generalized Eigenvalue Equation	165
			Computer Programming	166
			Numerical Examples	170
	3.2		tinuity Problem in Waveguides	170
			Functional Formulation	171

			Choice of the Basis Functions	174
			Discretization of the Functional	176
			Solution of the Linear Equations	178
			Extraction of the Scattering Parameters	180
			Numerical Examples	182
	3.3		ring from Three-Dimensional Objects	184
			Mathematic Formulation of the Problem	184
			Writing Computer Program	187
			Numerical Results	190
	3.4		Edge Element	192
		3.4.1	Construction of Node-Edge Element	192
		3.4.2	Implementation of Node-Edge Element	193
		3.4.3	Numerical Examples	195
	3.5	_	r-Order Element	196
	3.6		Element Time-Domain Method	200
	3.7		Comments on FEM	203
	Refe	erences		205
4	Finite-Difference Time-Domain Method			
	4.1	Scatte	ring from a Three-Dimensional Objects	207
		4.1.1	FDTD Solution Scheme	208
		4.1.2	Perfectly Matched Layers	209
		4.1.3	Yee Discretizing Scheme	215
		4.1.4	Discretization of the Scatterer Model	220
		4.1.5	Treatment on the Curved Boundary	220
		4.1.6	Determination of the Unit Size and the Time Step	222
		4.1.7	Plane Waves in Time Domain	223
		4.1.8	Calculation of Incident Plane Waves in Time Domain	225
		4.1.9	Calculation of the Radar Cross Section	227
		4.1.10	Computer Programing and Numerical Examples	229
	4.2	Treatn	nent for Special Problems	233
		4.2.1	Treatments for Thin Metallic Wires	233
		4.2.2	Treatments for Dispersive Media	235
		4.2.3	Treatments for Lumped Elements	237
	4.3	Compa	arison of the MoM, FEM and FDTD Methods	239
	Refe	erences		240
5	Hyl	orid Me	thods	243
	5.1		High-Frequency Asymptotic Methods and Full-Wave	
		•	rical Methods	244
		5.1.1	Hybird Physical Optics Method and FEM	244
		5.1.2	Hybrid Physical Optics Method and Moment Method	248

viii	Contents
5.2 Hybrid Full-Wave	merical Methods 251
5.2.1 Hybrid FE-	MLFMA 252
5.2.2 Hybrid Met	Combining EFIE and MFIE 266
5.2.3 Hybrid Me	d Combining FEM and Mode-Matching
Method	271
References	276
Index	277