CONTENTS

Introduction			1		
1	A ce	century of the hydrogen bond (H-bond)			
	1.1	The d	discovery of the H-bond	6	
	1.2	The t	theoretical understanding of the H-bond	7	
	1.3	The e	experimental approach to the H-bond	13	
	1.4	Signif	ficant books and reviews	19	
2	Generalities, definitions and preliminary classification				
	2.1	Basic	H-bond nomenclature	23	
	2.2				
	2.3				
		fication	28		
	2.4	H-bor	nds involving main-group elements (Class 1)	30	
		2.4.1	Conventional H-bonds (Group 1.1)	31	
		2.4.2	Weak H-bonds: General properties (Groups 1.2–4)	32	
			2.4.2.1 Treatment of H···A contact distances	35	
			2.4.2.2 H-bond directionality	36	
			2.4.2.3 Importance of crystal-packing patterns	38	
		2.4.3	Weak H-bond donors (Group 1.2)	38	
			2.4.3.1 C-H··· bonds	40	
			2.4.3.2 S-H··· bonds	42	
			2.4.3.3 P-H··· bonds	42	
			2.4.3.4 Si−H, As−H and Se−H··· bonds	43	
	2.4.4 Weak H-bond acceptors (Group 1.3)		Weak H-bond acceptors (Group 1.3)	44	
			2.4.4.1 C-Hal (Hal = F, Cl, Br) as acceptors	44	
			2.4.4.2 S, Se and Te as acceptors	44	
			2.4.4.3 P, As and Sb as acceptors	45	
			2.4.4.4 C as acceptor	46	
			Weak π -acceptors (Group 1.4)	47	
	2.5	nds involving metal centers (Class 2)	49		
		2.5.1	` ' '	50	
		2.5.2	1 (1 /	53	
		2.5.3	1 0		
			bond (DHB) (Group 2.3)	53	
			2.5.3.1 DHB to main-group hydrides	54	
			2.5.3.2 DHB to transition-metal hydrides	56	
		2.5.4	Metal ligands as H-bond donors or acceptors		
			(Groups 2.4-5)	56	

viii

3

	Contents		ix			
		3.3.4	CAHB a	geometry-energy relationships	163	
4	Mod	delling the H-bond by thermodynamic methods			168	
	4.1 Introduction			·	168	
	4.2	The u	ise of ΔP	A and $\Delta p K_a$ indicators in H-bond studies	168	
		4.2.1		pK_a definitions	168	
		4.2.2		transfer and proton-sharing H-bonds	170	
		4.2.3		ting ΔPA and ΔpK_a values: The problem		
			-	evaluation	171	
		4.2.4	The use	of PA and pK_a as predictors of the		
				strength: A summary	173	
	4.3	Predi	cting (-)	CAHB and (+)CAHB strengths from		
		entha	lpy versu	s proton affinity correlations	174	
		4.3.1	$\Delta H^{\circ}_{\;{ m DIS}}$	against Δ PA correlations	174	
		4.3.2	A verifi	cation of the PA equalization principle	175	
				ond strengths from crystal geometry		
	$\text{versus p} K_{\text{a}} \text{ correlations}$			177		
		4.4.1	pK_a tab			
			and acc	177		
		4.4.2	The p K	177		
		4.4.3	Two pre			
			principle		180	
			4.4.3.1	- 0 - 0 -		
				with $\Delta p K_a$ near zero	180	
			4.4.3.2	Second project. pK_a equalization in		
				the $N-H\cdots O/O-H\cdots N$ system	181	
			4.4.3.3	Conclusions	183	
	4.5	Appe	ndix. p K_i	a tables arranged for chemical functionality	184	
5	The empirical laws governing the H-bond: A summary				193	
				nemical leitmotifs (CLs): The three main		
		classes of H-bonds				
	5.2	2 Summary of VB methods: The electrostatic-covalent				
			-	(ECHBM)	196	
	5.3	· · · · · · · · · · · · · · · · · · ·				

2.6	H-bond classification by physical properties: Weak,		3.3.4 CAHB geometry-energy relationships	163
	moderate, and strong H-bonds	59	4 Modelling the H-bond by thermodynamic methods	168
2.7	Correlation among physical descriptors: The problem of		4.1 Introduction	168
	the driving variable	60	4.2 The use of ΔPA and ΔpK_a indicators in H-bond studies	168
Mod	lelling the H-bond by crystallographic methods	65	4.2.1 PA and p K_a definitions	168
3.1		65	4.2.2 Proton-transfer and proton-sharing H-bonds	170
0.1	3.1.1 A survey of structural databases	65	4.2.3 Computing ΔPA and ΔpK_a values: The problem	
	3.1.2 Crystal–structure correlation (CSC) methods	68	of ΔPA evaluation	171
	3.1.3 Bond lengths, bond energies and bond-number	00	4.2.4 The use of PA and pK_a as predictors of the	
	conservation rule	71	H-bond strength: A summary	173
	3.1.3.1 Bond lengths, energies and numbers	71	4.3 Predicting (-)CAHB and (+)CAHB strengths from	
	3.1.3.2 Bond-number conservation rule	72	enthalpy versus proton affinity correlations	174
	3.1.3.3 The Lippincott and Schroeder H-bond	. –	4.3.1 $\Delta H^{\circ}_{\mathrm{DIS}}$ against $\Delta \mathrm{PA}$ correlations	174
	model (LS-HB)	75	4.3.2 A verification of the PA equalization principle	175
3.2	A new class of H-bonds: The resonance-assisted		4.4 Predicting H-bond strengths from crystal geometry	0
0.2	H-bond (RAHB)	81	$V_{a} = 0$ versus p $K_{a} = 0$ correlations	177
	3.2.1 Cooperative H-bonds: An introduction	81	$4.4.1$ p K_a tables for the most common H-bond donors	
	3.2.2 Evidence for RAHB from CSC studies of	-	and acceptors	177
	β -diketone enols	84	$4.4.2$ The p K_a slide rule	177
	3.2.2.1 A survey of CSC results	84	4.4.3 Two projects for validating the p K_a equalization	
	3.2.2.2 RAHB interpretation: The ionic model	89	principle	180
	3.2.2.3 RAHB interpretation: The resonant model	91	4.4.3.1 First project. pK_a equalization in CAHBs	
	3.2.2.4 Appendix 3A: RAHB as a cybernetic effector	100	with $\Delta p K_a$ near zero	180
	3.2.2.5 Appendix 3B: RAHB as a state-correlation		4.4.3.2 Second project. pK_a equalization in	
	diagram	100	the N–H···O/O–H···N system	181
	3.2.2.6 Appendix 3C: RAHB electron effective-mass		4.4.3.3 Conclusions	183
	model	103	4.5 Appendix. pK_a tables arranged for chemical functionality	184
	3.2.3 RAHB generalization and systematics	108		
	3.2.3.1 RAHB generalization	108	5 The empirical laws governing the H-bond: A summary	193
	3.2.3.2 Intra- and intermolecular O-H···O RAHB	111	5.1 Summary of chemical leitmotifs (CLs): The three main	100
	3.2.3.3 Intramolecular N-H···N RAHB	121	classes of H-bonds	193
	3.2.3.4 Heteronuclear X-H···Y RAHB	122	5.2 Summary of VB methods: The electrostatic-covalent	100
3.3	Completing the H-bond classification: The chemical leitmotifs	147	H-bond model (ECHBM)	196
0.0	3.3.1 A full H-bond classification from the systematic		5.3 Summary of the PA/pK_a equalization principle	199
	analysis of the O-H···O system	147	5.4 On the chemical nature of the H-bond	200
	3.3.1.1 A full CSD analysis of the O-H···O system	147	6 Outline of a novel transition-state H-bond theory (TSHBT)	203
	3.3.1.2 Interpreting the O-H···O system: The		6.1 Empirical laws, models and scientific theories: An introduction	203
	electrostatic-covalent H-bond model	155	6.2 A new way of looking at the H-bond: The TSHBT	206
	3.3.1.3 Interpreting the O-H···O system:		6.2.1 Introduction	206
	The PA/pK_a equalization principle	159	6.2.2 Criteria for the choice of a suitable PT reaction	206
	3.3.2 CAHB generalization to other homonuclear		6.3 A practical verification of the TSHBT	208
	X–H···X bonds	161	6.3.1 A suitable reaction: The ketohydrazone \rightleftharpoons azoenol	
	3.3.3 CAHB generalization to heteronuclear X-H···Y bonds	163	system	208

Contents

 \mathbf{x}

		6.3.2	Methods of study	208	
		6.3.3	Analysis of crystallographic results	210	
		6.3.4	DFT emulation	211	
		6.3.5	Marcus analysis of DFT data	213	
		6.3.6	Conclusions	220	
7	The		th of the H-bond: Definitions and thermodynamics	222	
	7.1		I-bond strength in gas-phase, non-polar solvents and	222	
			ular crystals	222	
		7.1.1	Enthalpy-entropy compensation and its influence on	000	
			the H-bond strength	222	
		7.1.2	H-bond strength in the gas phase	223	
				224	
			H-bond strength in molecular crystals	225	
	7.2		I-bond strength in aqueous solutions	225	
		7.2.1	Introduction: Drug-receptor binding as a sample	00"	
			system	225	
		7.2.2	Hydrophilic and hydrophobic contributions to	226	
		700	drug-receptor binding	226	
		7.2.3	Hydrophobic binding: Thermodynamics of the	228	
		704	steroid-nuclear receptor system	220	
		7.2.4	Hydrophilic-hydrophobic binding: Thermodynamics	232	
		705	of the adenosine A ₁ membrane receptor	202	
		7.2.5	Enthalpy-entropy compensation: A universal property	235	
		706	of drug-receptor binding	200	
		7.2.6	Solvent reorganization and enthalpy-entropy		
			compensation in drug-receptor binding: The Grunwald and Steel model	238	
		797		200	
		7.2.7	Thermodynamic discrimination in ligand-gated	241	
		799	ion channels Enthalpy—entropy compensation in	241	
		7.2.8	- · · · · · · · · · · · · · · · · · · ·	242	
			crown ethers and cryptands	272	
8	The role of strong H-bonds in nature: A gallery of functional				
		onds		245	
	8.1		duction	245	
			Detecting strong H-bonds	245	
	0.0		The concept of 'functional H-bonds'	245	
	8.2		B-driven prototropic tautomerism	247	
		8.2.1	RAHB-activation of the carbon in α to a carbonyl	247	
		8.2.2	RAHB-induced enolization in keto-enol tautomerism	248	
		8.2.3	RAHB-induced tautomerism in heteroconjugated	946	
		0.0.4	systems PAUD	248	
		8.2.4	RAHB cooperativity and anticooperativity in	940	
			more complex cases	249	

Contents	

xi

8.3 H-bond-controlled crystal packing			251		
	8.3.1	The crystal packing of squaric acid and its anions	251		
8.4	8.4 Bistable H-bonds in functional molecular materials				
	8.4.1	Generalities	253		
	8.4.2	RAHB and ferro/antiferroelectric behavior	254		
	8.4.3	RAHB and excited-state proton transfer (ESPT)	258		
8.5	Funct	tional H-bonds in biological systems			
	8.5.1	RAHB in the secondary structure of proteins and in			
		DNA base pairing	260		
	8.5.2	Charge-assisted H-bonds in enzymatic catalysis	261		
		8.5.2.1 Generalities	261		
		8.5.2.2 The catalytic triad of serine proteases	263		
		8.5.2.3 Δ ⁵ -3-Ketosteroid isomerase	266		
		8.5.2.4 An aspartic protease: HIV-1 protease	267		
8.6	Σ -bond cooperativity and anticooperativity in PAHBs		269		
	8.6.1	Cooperative and anticooperative water chains	269		
	8.6.2	An example of cooperativity: The gramicidine A			
		channel	272		
	8.6.3	An example of anticooperativity: Water-without-proton			
		transmission in aquaporin channels	275		
Reference	References		277		
Index					