Detailed Contents

Pre	eface p	page xv
1	The Finite Element Method: Introductory Remarks	1
	The Mathematical Approach: A Variational Interpretation	2
	Continuum Problems	3
	Terminology and Preliminary Considerations: Types of Nodes	4
	Degrees of Freedom	4
	Interpolation Functions: Polynomials	6
	One Independent Variable	6
	Two Independent Variables	7
	Three Independent Variables	7
	Deriving Interpolation Functions	8
	Natural Coordinates	10
	Natural Coordinates in One Dimension	11
	Natural Coordinates in Two Dimensions	12
	Natural Coordinates in Three Dimensions	14
	Curve-Sided Isoparametric Elements	16
	Coordinate Transformation	17
	Evaluation of Elemental Matrices	20
	References	22
2	Some Methods for Solving Continuum Problems	23
	Overview	23
	The Ritz Method	24
	Example: The Ritz Method	24
	The Finite Element Method: Relation to the Ritz Method	26
3	Variational Approach	27
	Example of Piecewise Approximation	28
	Elemental Equations from a Variational Principle	30

4	Requirements for the Interpolation Functions	33
5	Heat Transfer Applications	35
	Variational Approach	35
	Example	37
	Approximation of Integrals	38
	One-Dimensional Steady-State Problems	39
	Finite Element Formulation	40
6	One-Dimensional Steady-State Problems	42
	Variational Statement	42
	Finite Element Formulation	44
	Numerical Results	48
	Problems	49
7	The Two-Dimensional Heat-Conduction Problem	51
	Variational Statement	51
	Finite Element Formulation	52
	Numerical Solution	59
	Numerical Results	63
8	Three-Dimensional Heat-Conduction Applications with Convection	
	and Internal Heat Absorption	66
	The Problem of Cooling a Radial Turbine Rotor: Overview	66
	Governing Equations	67
	Finite Element Variational Formulation	68
	Euler's Theorem of Variational Calculus	68
	Derivation of the Variational Statement	69
	Discretization of the Continuum	71
	Evaluation of $dI_k/d\{T\}$	73
	Evaluation of $dI_g/d\{T\}$	78
	Evaluation of $dI_h/d\{T\}$	79
	Evaluation of $dI_q/d\{T\}$	82
	The Final Set of Equations	83
	Turbine Rotor Configuration and Cooling Techniques	83
	Determination of the Hot Turbine Boundary Conditions	84
	Rotor Blade	84
	Rotor Disk Backside	85
	Rotor Hub	85
	Cooled Turbine Rotor Calculations	85
	Rotor Disk Cooling	86
	Blade Cooling through a Slot	86
	Blade Cooling through Radially Drilled	~ -
	Holes	86
	Numerical Results	87
	Remark	93

	Problems	93
	References	94
9	One-Dimensional Transient Problems	95
	Variational Statement	95
	Finite Element Formulation	96
	Numerical Solutions	101
	Euler's Method	101
	Crank-Nicolson Method	103
	Purely Implicit Method	103
	References	105
10	Fluid Mechanics Finite Element Applications	106
	Introduction	106
	Inviscid Incompressible Flows	107
	Problem Statement	107
	Velocity Potential and Stream-Function Formulations	109
	Flow around Multiple Bodies by Superposition	111
	References	113
11	Use of Nodeless Degrees of Freedom	114
	Overview	114
	Flow-Governing Equations	120
	Boundary Conditions	122
	Flow Inlet Station $(B-C)$	122
	Flow Exit Station $(D-A)$	122
	Periodic Boundaries $(A - B \text{ and } D - C)$	123
	Domain-Splitting Boundaries $(E - F \text{ and } G - H)$	123
	Airfoil Suction and Pressure Surfaces	123
	Finite Element Analysis	124
	Galerkin's Weighted-Residual Approach	127
	Applications	128
	Flow Analysis in a Rectilinear-Airfoil Cascade	128
	Field Discretization Model	128
	Computational Results and Accuracy Assessment	128
	Periodicity Conditions in Radial Cascades	130
	Flow Investigation in a Radial-Turbine Scroll	130
	Finite Element Analysis	132
	Introduction of a Velocity Potential Discontinuity	134
	Computational Results	134
	Proposed Analysis Upgrades	135
	Domains with High Degrees of Multiconnectivity	135
	Axial-Flow Stator with a Spanwise Circulation	138
	Variation	138
	Problems References	147
	INCACALARAA	/

12	Finite Element Analysis in Curvilinear Coordinate	149
	Introduction	149
	Analysis Guidelines and Limitations	153
	Flow-Governing Equations	154
	Continuity Equation	154
	Through-Flow Momentum Equation	154
	Tangential Momentum Equation	154
	Boundary Conditions	156
	Finite Element Formulation	158
	Continuity Equation	160
	Through-Flow Momentum Equation	160
	Tangential Momentum Equation	160
	Iterative Solution Procedure	161
	Application Examples	162
	Example 1: Second-Stage Stator of a Gas Turbine	164
	Example 2: Low-Aspect-Ratio Turbine Stator	165
	Proposed Analysis Upgrades	167
	Adaptation to a Rotating-Blade Cascade	167
	Inclusion of the Flow Turbulence Aspect	169
	Problems	169
	References	174
13	Finite Element Modeling of Flow in Annular Axisymmetric	
	Passages	176
	Introduction	176
	Analysis	177
	Flow-Governing Equations	177
	Turbulence Closure	178
	Boundary Conditions	180
	Finite Element Formulation	181
	Method of Numerical Solution	183
	Numerical Results	183
	Grid Dependency of the Flow Field	184
	Diffuser Flow Field and Off-Design Performance	184
	References	187
14	Extracting the Finite Element Domain from a Larger Flow	
	System	189
	Introduction	189
		191
	Analysis Salaction Ontions of the Computational Domain	191
	Selection Options of the Computational Domain	
	Flow-Governing Equations	192
	Boundary Conditions	193
	Stage Inlet Station	193
	Impeller Inlet and Exit Stations	193
	Stage Exit Station	193

	Solid Boundary Segments	193
	Finite Element Formulation	194
	Numerical Results	194
	References	199
15	Finite Element Application to Unsteady Flow Problems	201
	Introduction	201
	Example	201
	Flow-Governing Equations	204
	Continuity Equation	204
	Radial Momentum Equation	204
	Tangential Momentum Equation	205
	Axial Momentum Equation	205
	Boundary Conditions	205
	Finite Element Formulation	207
	Time-Integration Algorithm	210
	Numerical Procedure	211
	Computational Results	211
	Proposed Analysis Upgrades	219
	Bidirectional Transfer of Boundary Conditions	219
	Starting Point	220
	Two-Way Stator/Rotor Exchange of Boundary Conditions	220
	Continuity of the Variables' Normal Derivatives through	
	Implicit Means	223
	Methodology	223
	Analysis	224
	Problems	226
	References	235
16	Finite Element-Based Perturbation Approach to Unsteady Flow	
	Problems	237
	Overview	237
	Foundation of the Finite Element–Based Perturbation Approach	238
	Definition of the Force-Related Rotordynamic Coefficients	240
	Computational Development: Analysis of the Centered-Rotor	
	Flow Field	242
	Flow-Governing Equations	242
	Continuity Equation	242
	Axial Momentum Equation	242
	Radial Momentum Equation	243
	Tangential Momentum Equation	243
	Boundary Conditions	243
	Flow Inlet Station	243
	Flow Exit Station	244
	Solid Boundary Segments	244
	Introduction of the Upwinding Technique	244

Finite Element Formulation	245
Method of Numerical Solution	248
Assessment of the Centered-Rotor Flow Field	249
Computational Development: Building the Zeroth-Order	
Flow Model	249
Strategy	251
Transition to an Alternate Frame of Reference	252
Adaptation of the Axisymmetric Flow Solution	253
Flow-Governing Equations in the Rotating Frame of Reference	255
Continuity Equation	255
x-Momentum Equation	255
y-Momentum Equation	255
z-Momentum Equation	255
Calculation of the Force-Related Rotordynamic Coefficients	256
Applications: Benchmark Test Case—Comparison with Cal Tech's	
Experimental Work	258
Background	258
Features of the Centered-Rotor Flow Field	259
Assessment of the Fluid-Induced Force Components	260
Applications: Perturbed Flow Structure due to Synchronous Whirl	262
Overview	262
Grid Dependency Investigation	264
Samples of the Computational Results	265
Comparison with Experimental Data	267
Applications: Rotordynamic Analysis of Labyrinth Seals	273
Literature Survey	273
Centered-Rotor Flow Field	275
Investigation of the Grid Dependency	278
Fluid-Induced Forces and Rotordynamic Coefficients	280
Applications: Rotordynamic Behavior of a Shrouded Pump Impeller	283
Centered-Impeller Subproblem: Contouring the Flow Domain	284
Centered-Impeller Subproblem: Boundary Conditions	284
Stage Inlet Station	284
Impeller Inlet and Exit Stations	285
Stage Exit Station	285
Solid Boundary Segments	285
Flow Structure	285
Simulation of the Impeller Subdomain Effects	291
Worthiness of Simulating the Impeller Subdomain	292
Results of the Perturbation Analysis	294
Assessment of the Single-Harmonic Perturbation Assumption	296
Applications: Investigation of Annular Seals under Conical Whirl	298
Rotordynamic Analysis of the Fluid/Rotor Interaction	•
System	299
Computational Results	301
Applications: Interrelated Effects of the Cylindrical/Conical	200
Rotor Whirl	303

Contents	xiii

Expanded Rotordynamic Analysis	304
Computational Results	306
Applications: Compressible-Flow Gas Seals Using a Simplified	
Adiabatic-Flow Approach	307
Computational Results	308
Comment	308
Proposed Upgrades of the Perturbation Analysis	309
Inclusion of the Shear-Stress Perturbations in Computing	
the Fluid-Induced Forces	309
Rigorous Adaptation to Compressible-Flow Problems	311
Relevant Remarks	311
Problems	313
References	317
Appendix A. Natural Coordinates for Three-Dimensional	
Surface Elements	321
Appendix B. Classification and Finite Element Formulation	
of Viscous Flow Problems	324
Appendix C. Numerical Integration	331
Appendix D. Finite Element–Based Perturbation Analysis: Formulation of the	
Zeroth-Order Flow Field	335
Appendix E. Displaced-Rotor Operation: Perturbation Analysis	344
Appendix F. Rigorous Adaptation to Compressible-Flow Problems	355
Index	369