CONTENTS

Pre	Preface		i>
Fut	ture C	Contributions	X
Co	ntribu	itors	X۱
1.	Inte	all Angle Scatter with Correlation, Scatter and ermediate Functions Theodore Cremer, Jr.	ons 1
	1.	Overview of Scatter: Neutron and X-ray Small-angle Scatter in Perspective	2
		Neutron and X-ray Scatter Amplitude from Non–Bravais Lattice Crystal	6
		Neutron and X-ray Scatter Intensity from Non–Bravais Lattice Crystal	1(
		Small-angle Scatter: Scatter Length Density and Particle Structure Factor	13
		Small-angle Scatter: Scatter Amplitudes and Intensity	1.
	6.	The Rayleigh–Gans Equation, Babinet's Principle,	
		and Differential Cross Sections	2.
		Random Variables: Correlation and Independence	2
		The Scattering Vector Resolution of SANS Instruments for Neutrons and X-rays	2
	9.	Macroscopic Differential Cross Section: Scatter Length Density	3
	10	Convolution and Correlation The Pair Correlation Function	3
		The Macroscopic Differential Cross Section for Elastic Scatter Expressed	٥
	11.	By Intermediate Function, and Fourier Transform of Patterson Function	4.
	12	Scatter Function for Elastic and Inelastic Scatter from Sample Solute	
	12.	Particles Obtained from Neutron (X-ray), Sample-Averaged Scatter Intensity	4.
	13.	Sample-averaged Scatter Intensity Versus Scattering Vector q for the	
		Guinier, Intermediate, and Porod Regimes	4
	14.	Small-angle Scatter: Measurement of Solute Particle Size and	
		Shape—Guinier Regime	5
	15.	Small-angle Scatter from Spherical Particles—Guinier Regime	5
	16.	Small-angle Scatter from Particles of Various Shapes, Log-log Plots,	
		Method of Contrast Variation—Guinier Regime	5
	17.	Small-angle Scatter—Intermediate Regime and Porod Regime	6
	18.	Small-Angle Scatter—Porod Regime and Porod's Law	6
	19.	Neutron Incoherent Scatter: Solution of the Diffusion Equation with	
		Self-Correlation and Incoherent Scatter Functions, Measurable by	
		Small-angle Scatter	6
	20.	Neutron Coherent Partial Differential Cross Section: The Scatter Function	
		and the Principle of Detailed Balance	7

Contents

	21.	The Coherent and Incoherent Pair Correlation Function, Intermediate Function, and Scatter Function: the Static Approximation	82
	วา	The Particle Number Density Operator and the Coherent Intermediate	02
	22.	and Pair Correlation Functions	86
	23	Neutron Elastic Scatter Occurs Only in Forward Direction for Liquids and	00
	25.	Gases Shown by Coherent Intermediate and Scatter Functions	88
	24	Neutron Coherent Differential Cross Sections in Crystals Derived from	00
	∠¬.	Coherent Scatter and Intermediate Functions	90
	25.	Pair Correlation Function Expressed by Particle Density Operator	,,
		and the Patterson Function	95
	26.	Neutron Coherent Differential Cross Section in Crystals Expressed by	
		Particle Density Operators	97
	27.	Neutron Incoherent Elastic Differential Cross Section in Crystals Derived	
		from Incoherent Intermediate Function	99
	28.	Neutron Incoherent Differential Cross Section in Crystals Derived from	
		Incoherent Pair Correlation Function	101
	29.	No Elastic Scatter Except Forward Direction in Liquids and Gases is	
		Shown by Intermediate and Pair Correlation Functions	103
	30.	Moments of the Neutron Scatter Function	106
	Refe	erences	110
_		L. C. H. of Northern Calls Chates	440
2.		clear Scatter of Neutron Spin States	113
	Jay	Theodore Cremer, Jr.	
	1.	Angular Momentum Vectors, Spin Vectors, and Vector Operators	113
	2.	Heisenberg Uncertainty Principle and Commutation of Operators	116
	3.	The Neutron Spin Operator	119
		The Neutron Spin–Lowering and –Raising Operators	120
	5.	Nuclear Scatter of Neutron Spin States: Partial Differential Cross Section	124
	6.	Combined Neutron and Nuclear spin Operators for Polarized Neutron	
		Scatter	125
		Neutron Nuclear Scatter Lengths for Neutron Spin States	129
	8.	Partial Differential Cross Section for Single Transition Neutron Spin-State	
		Scatter	131
	9.	Thermal Averaging: Total Partial Differential Cross Section for Neutron	
		Spin-State Scatter	133
	10.	Neutron Spin-State Scatter Lengths for Ensemble of Nuclear Spins	100
	11	and Isotopes	136
		Coherent Partial Differential Cross Section for Neutron Spin-State Scatter	138
	17	Incoherent Partial Differential Cross Section for Neutron Spin-State Scatter	140
		erences	143

νi

3.	Atomic-Resolution Core-Level Spectroscopy in the Scanning Transmission Electron Microscope	145
	Christian Dwyer	
	1. Introduction	146
	2. Practical Aspects	148
	3. Theoretical Aspects	157
	4. Selected Applications	186
	5. Concluding Remarks	192
	Acknowledgements	193
	References	194
4.	Point Spread Function Engineering for Super-Resolution Single-Photon and Multiphoton Fluorescence Microscopy	201
	Partha Pratim Mondal and Alberto Diaspro	
	1. Introduction	201
	2. Theory	203
	3. Results and Discussions	205
	4. Conclusions	217
	Acknowledgments	218
	References	218
5.	A Review of Recent Advances in the Hit-or-Miss	
	Transform	221
	Paul Murray and Stephen Marshall	
	1. Introduction	222
	2. Preliminaries and Properties of Mathematical Morphology	224
	3. Fundamental Morphological Operations	228
	4. Extensions of the Hit-or-Miss Transform	242
	5. Conclusions	277
	References	279
6.	Perspectives on Color Image Processing by Linear Vector	
	Methods Using Projective Geometric Transformations	283
	Stephen J. Sangwine	
	1. History and Background	283
	2. Linear Filtering	285
	3. Linear Quaternion Systems and Homogeneous Coordinates	294
	4. Quaternion Derivations Of Geometric Operations	301
	5. The Difficulty Of Designing Linear Filters	304

viii	Contents	
6. Conclusion	305	
Acknowledgments	305	
References	305	
Subject Index	309	
Contents of Volumes 151–174	323	