Contents

A	knowledgments	xiii
In	troduction	$\mathbf{x}\mathbf{v}$
1	Setting the Stage for 1905	1
	1.1 Overview	1
	1.2 Historical Background	2
	1.2.1 600 BC to AD 200: The Contribution of the	
	Early Greeks 1.2.2. The 1600e: The Contribution of Calilee and Newton	4
	1.2.2 The 1000s. The Contribution of Maxwell and Lorentz	13
	1.2.4 The Worldview in 1900	15
	1.3 Albert Einstein	15
	1.3.1 The Pre-College Years	15
	1.3.2 The College Years	17
	1.3.3 From College to 1905	19
	1.4 Discussion and Comments	20
	1.5 Appendices	21
	1.5.1 Science Today	21
	1.5.2 Newton's Law of Gravitation from Kepler's Laws	25
	1.0 Notes	21
	1.7 Bibliography	31
2	Radiation and the Quanta	33
	2.1 Historical Background	33
	2.1.1 Thermodynamics and Entropy	33
	2.1.2 Blackbody Radiation	34
	2.1.3 Max Planck's Derivation of the Radiation Density	30
	2.2 Albert Einstein's Paper, On a Heuristic Foint of View Concerning the Production and Transformation of Light"	39
	2.2.1 On a Difficulty Encountered in the Theory of	0.
	"Blackbody Radiation"	40
	2.2.2 On Planck's Determination of the Elementary Quanta	4
	2.2.3 On the Entropy of Radiation	42
	2.2.4 Limiting Law for the Entropy of Monochromatic	
	Radiation at Low Radiation Density	43

		2.2.5 Molecular-Theoretical Investigation of the Dependence of the Entropy of Cases and Dilute	
		Solutions on the Volume	43
		2.2.6 Interpretation of the Expression for the Dependence	10
		of the Entropy of Monochromatic Badiation on	
		Volume According to Boltzmann's Principle	44
		2.2.7 On Stokes' Bule	45
		2.2.8 On the Generation of Cathode Bays by Illumination	
		of Solid Bodies	46
		2.2.9 On the Ionization of Gases by Ultraviolet Light	47
	2.3	Discussion and Comments	47
	21	Appendices	49
	2.4		40
		2.4.1 Entropy and Irreversibility	49
		2.4.2 Planck's derivation of $\rho(\nu, I)$	50 F 1
	0.5	2.4.3 Wien's Expression for Entropy	51
	2.5	Notes	92
	2.6	Bibliography	55
3	\mathbf{Th}	e Atom and Brownian Motion	56
	3.1	Historical Background	56
		311 The Atom	57
		3.1.2 Brownian Motion	60
		3 1 3 The Worldview in 1900	60
	3.2	Albert Einstein's Paper. "A New Determination	00
	0.2	of Molecular Dimensions"	62
		3.2.1 On the Influence on the Motion of a Liquid	
		Exercised by a Very Small Sphere Suspended in It	63
		3.2.2. Calculation of the Coefficient of Viscosity of a Liquid	00
		in Which Very Many Irregularly Distributed Small	
		Spheres are Suspended	66
		3.2.3 On the Volume of a Dissolved Substance Whose	00
		Molecular Volume is Large Compared to that	
		of the Solvent	67
		3.2.4 On the Diffusion of an Undissociated Substance	
		in a Liquid Solution	68
		3.2.5 Determination of the Molecular Dimensions with the	
		Help of the Relations Obtained	69
	3.3	Albert Einstein's Paper, "On the Movement of Small	
		Particles Suspended in Stationary Liquids Required by the	
		Molecular-Kinetic Theory of Heat"	70
		3.3.1 On the Osmotic Pressure Attributable to Suspended	
		Particles	71
		3.3.2 Osmotic Pressure from the Standpoint of the	• •
		Molecular-Kinetic Theory of Heat	72
		3.3.3 Theory of Diffusion of Small Suspended Spheres	73
		3.3.4 On the Random Motion of Particles Suspended in a	-
		Liquid and Their Relation to Diffusion	75
		1	

		3.3.5 Formula for the Mean Displacement of Suspended	
		Size of Atoms	76
	3.4	Discussion and Comments	76 76
	3 5	Appendices	78
	0.0	351 Derivation of the Expressions for $u_1 v_2$ and w_3	78
		3.5.2 Derivation of the Expression for $W = \text{Energy per}$	10
		U_{Diff} Unit Time Converted into Heat	85
		3.5.3 Derivation of the Coefficient of Viscosity of a Liquid	00
		in Which Very Many Irregularly Distributed Spheres	
		are Suspended	90
		3.5.4 Determination of the Volume of a Dissolved Substance	93
		3.5.5 Derivation of the Expression for Entropy	93
		3.5.6 Derivation of $B = JV^{*n}$	95
		3.5.7 Derivation of $\nu = f(x, t)$	96
		3.5.8 Derivation of $\langle x^2 \rangle$	98
	3.6	Notes	98
	3.7	Bibliography	103
4	$\mathbf{T}\mathbf{h}$	e Special Theory of Relativity	105
	4.1	Historical Background	105
		4.1.1 The Relativity of Galileo Galilei and of Isaac Newton	105
		4.1.2 The Lorentz Transformations (from Lorentz)	108
	4.2	Albert Einstein's Paper, "On the Electrodynamics of	
		Moving Bodies"	113
		4.2.1 Definition of Simultaneity	115
		4.2.2 On the Relativity of Lengths and Times	116
		4.2.3 Theory of Transformation of Coordinates and Time from a System at Rest to a System in Uniform	
		Translational Motion Relative to It	118
		4.2.4 The Physical Meaning of the Equations Obtained	
		Concerning Moving Rigid Bodies and Moving Clocks	120
		4.2.5 The Addition Theorem of Velocities	121
		4.2.6 Transformation of the Maxwell–Hertz Equations for	
		Empty Space. On the Nature of the Electromotive	100
		Forces that Arise upon Motion in a Magnetic Field	122
		4.2.7 Theory of Doppler's Finisple and of Aberration	124
		of the Badiation Pressure Exerted on Perfect Mirrors	126
		4.2.9 Transformation of the Maxwell–Hertz Equations	120
		when Convection Currents Are Taken into	
		Consideration	128
		4.2.10 Dynamics of the (Slowly Accelerated) Electron	128
	4.3	Albert Einstein's Paper, "Does the Inertia of a Body	
		Depend Upon Its Energy Content?"	129
	4.4	Discussion and Comments	131

4.5 Appendices	133
4.5.1 Lorentz and the Transformed Maxwell Equations	133
4.5.2 Derivation of the Lorentz Transformation Equations	140
4.5.3 The Electromagnetic Field Transformations	146
4.5.4 The Doppler Principle	150
4.5.5 The Electrodynamic Lorentz Force	153
4.6 Notes	155
4.7 Bibliography	159
5 The General Theory of Relativity	161
5.1 Historical Background	161
5.1.1 Lingering Questions	161
5.1.2 Generalizing the Special Theory of Relativity	163
5.1.3 The Equivalence of a Gravitational Field and an	
Accelerated Reference Frame	164
5.1.4 The Timeline from 1905 to 1916	167
5.2 Albert Einstein's Paper, "The Foundation of the General	
Theory of Relativity"	171
Part A: "Fundamental Considerations on the Postulate	
of Relativity"	171
5.2.1 Observations on the Special Theory of Relativity	171
5.2.2 The Need for an Extension of the Postulate	
of Relativity	172
5.2.3 The Space-Time Continuum. Requirement of	
General Covariance for the Equations Expressing	
General Laws of Nature	174
5.2.4 The Relation of the Four Coordinates to	
Measurement in Space and Time	175
Part B: "Mathematical Aids to the Formulation of	
Generally Covariant Equations"	178
5.2.5 Contravariant and Covariant Four-Vectors	179
5.2.6 Tensors of the Second and Higher Ranks	181
5.2.7 Multiplication of Tensors	182
5.2.8 Some Aspects of the Fundamental Tensor $g_{\mu\nu}$	183
5.2.9 The Equation of the Geodetic Line. The Motion	
of a Particle	186
5.2.10 The Formation of Tensors by Differentiation	187
5.2.11 Some Cases of Special Importance	188
5.2.12 The Riemann–Christoffel Tensor	191
Part C: "Theory of the Gravitational Field"	192
5.2.13 Equations of Motion of a Material Point in the	
Gravitational Field. Expression for the	
Field-Components of Gravitation	192

5.2.14 The Field Equations of Matter	s of Gravitation in the Absence	193
5.2.15 The Hamiltonian Fu Field. Laws of Mom	nction for the Gravitational entum and Energy	194
5.2.16 The General Form of	of the Field Equations	100
of Gravitation 5.2.17 The Laws of Conser	vation in the General Case	$\frac{196}{198}$
5.2.18 The Laws of Momen	ntum and Energy for Matter,	
as a Consequence of	the Field Equations	198
Part D: "Material Phenomen	a"	199
5.2.19 Euler's Equations fo 5.2.20 Maxwell's Electrom	or a Frictionless Adiabatic Fluid agnetic Field Equations for	199
Free Space		200
Part E:		205
5.2.21 Newton's Theory as	a First Approximation	205
5.2.22 The Behaviour of R Gravitational Field	ods and Clocks in the Static Bending of Light Bays Motion	
of the Perihelion of	a Planetary Orbit	208
5.3 Discussion and Comments	·	213
5.3.1 Verification of the C	General Theory of Relativity	213
5.3.2 Beyond the General	Theory of Relativity:	916
5.4 Appendices	Unified Field Theory	$\frac{210}{223}$
5.4.1 Multiplication of Te	onsors	223
5.4.2 Some Aspects of the	e Fundamental Tensor $q_{\mu\nu}$	$220 \\ 224$
5.4.3 The Equation of the	e Geodetic Line	225
5.4.4 The Formation of T	Censors by Differentiation	229
5.4.5 Some Cases of Spec	ial Importance	232
5.4.6 The Riemann–Chris	stoffel Tensor	239
5.4.7 The Hamiltonian F	unction for the	
Gravitational Field		241
5.4.8 Calculation of the I	Bending of Starlight	249
5.4.9 Calculation of the H	Precession of the Perihelion	
of Mercury		249
5.4.10 The Bending of Sta	rlight Experiment	253
5.4.11 Newton's Bucket		254
5.5 Notes		255
5.6 Bibliography		262
6 Einstein and Quantum Me	chanics	265
6.1 Historical Background		265
6.2 The Evolution of Quantum	n Mechanics	267
6.2.1 The Theory of Spec	cific Heat (1906)	267
6.2.2 The Dual Nature of	f Radiation (1909)	268

6.2.3 The Bohr Atom (1913)	269
6.2.4 Spontaneous and Induced Transitions (1916)	271
6.2.5 The Compton Scattering Experiment (1923)	271
6.2.6 Bose–Einstein Statistics (1924)	272
6.2.7 Einstein, de Broglie (1924), and Schrödinger (1	926) 275
6.2.8 Einstein and Bohr (1927, 1930)	277
6.3 Discussion and Comments	281
6.4 Appendices	282
6.4.1 The Specific Heat of Dulong and Petit	282
6.4.2 The Commutator of P and Q	282
6.5 Notes	283
6.6 Bibliography	287
7 Epilogue	290
7.1 The Inflexible Boundary Condition	290
7.2 Notes	293
7.3 Bibliography	295

 $\mathbf{297}$