Contents

1 Looking at the Nonlinear World 1
1.1 Characteristics of linear systems 2
1.2 Characteristics of nonlinear systems 10
1.3 Intrinsically nonlinear systems 16
1.4 What do we mean by 'appreciating the world'? 17
1.5 The structure of this book 19
2 Conceptual Analysis 35
2.1 Starting with typical examples - chaos as an example 39
2.2 Dynamical systems 51
2.3 Characterizing chaos 57
2.4 How to quantify 'history' 64
2.5 How to quantify information 72
2.6 Measure-theoretical dynamical systems 76
2.7 How to quantify chaos 80
2.8 Preparation for characterizing randomness 91
2.9 What is computation? 96
2.10 Turing machine 99
2.11 Characterizing randomness 103
2.12 Understanding the essence of chaos 105
2.13 Is the characterization of randomness satisfactory? 110
2.14 How is 'complexity' understood? 111
3 Phenomenology 121
3.1 What is phenomenology? 123
3.2 Phenomenology too universal to be recognized 133
3.3 How to obtain phenomenology-relation to renormalization.. 139
3.4 Two approaches to renormalization 144
3.5 ABC of renormalization 145
3.6 Longtime behavior and renormalization: a simple example 160
3.7 Resonance and renormalization 166
3.8 How reliable is the renormalization group result? 173
3.9 Proto-renormalization group approach to system reduction 176
3.10 Statistics seen from the renormalization group point of view 183
4 Modeling 191
4.1 What is a model? 192
4.2 Correspondence between models and reality. 195
4.3 Models as tools of description 200
4.4 Models as tools of deduction 206
4.5 Examples of modeling - examples of abduction 207
4.6 What characterizes good models? 217
4.7 By-products of modeling 223
5 Toward Complexity 235
5.1 Meaning and value 236
5.2 Pasteur process 243
5.3 Fundamental conditions 247
5.4 What do 'fundamental conditions' imply? 255
5.5 How can we approach complex systems? 261
5.6 Is there a 'theory of biological systems'? 264
5.7 How do fundamental conditions evolve? 268
5.8 How do systems complexify? 272
5.9 Integration step and its logical consequence 275
5.10 'Lessons' we learn from complex systems 281
Index 293

