Contents

1	Loo	king at the Nonlinear World 1
	1.1	Characteristics of linear systems 2
	1.2	Characteristics of nonlinear systems 10
	1.3	Intrinsically nonlinear systems 16
	1.4	What do we mean by 'appreciating the world'? 17
	1.5	The structure of this book 19
2	Con	ceptual Analysis
	2.1	Starting with typical examples—chaos as an example 39
	2.2	Dynamical systems
	2.3	Characterizing chaos
	2.4	How to quantify 'history' 64
	2.5	How to quantify information
	2.6	Measure-theoretical dynamical systems
	2.7	How to quantify chaos
	2.8	Preparation for characterizing randomness
	2.9	What is computation?
	2.10	Turing machine
	2.11	Characterizing randomness 103
	2.12	Understanding the essence of chaos 105
	2.13	Is the characterization of randomness satisfactory? 110
	2.14	How is 'complexity' understood? 111
3	Phe	nomenology
	3.1	What is phenomenology? 123
	3.2	Phenomenology too universal to be recognized
	3.3	How to obtain phenomenologyrelation to renormalization 139
	3.4	Two approaches to renormalization
	3.5	ABC of renormalization 145
	3.6	Longtime behavior and renormalization: a simple example \dots 160
	3.7	Resonance and renormalization 166

	3.8	How reliable is the renormalization group result? 173
	3.9	Proto-renormalization group approach to system reduction 176
	3.10	Statistics seen from the renormalization group point of view $% \left({{{\bf{N}}_{{\rm{N}}}}} \right)$. 183
4	Moo	leling
	4.1	What is a model? 192
	4.2	Correspondence between models and reality
	4.3	Models as tools of description 200
	4.4	Models as tools of deduction 206
	4.5	Examples of modeling—examples of abduction— 207
	4.6	What characterizes good models?
	4.7	By-products of modeling 223
5	Tow	ard Complexity
	5.1	Meaning and value
	5.2	Pasteur process
	5.3	Fundamental conditions
	5.4	What do 'fundamental conditions' imply? 255
	5.5	How can we approach complex systems?
	5.6	Is there a 'theory of biological systems'?
	5.7	How do fundamental conditions evolve?
	5.8	How do systems complexify? 272
	5.9	Integration step and its logical consequence
	5.10	'Lessons' we learn from complex systems
Ind	ex	