Contents

Foi	rewo	ord	xiii
Pre	face		xvii
Co	ntrik	putor	xix
Fut	ture	Contributions	xxi
1.	E2	st and Thermal Neutrons for Radiography and Isotope	
1.		etection	1
	1.	Inelastic and Elastic Fast Neutron Scatter	2
	2.	Moderation of Fast Neutrons to Thermal Neutrons	7
	3.	Determination of Neutron Moderator Thickness	10
	4.	Inelastic Fast Neutron Scatter—Determination	
		of Scattered Target Nucleus Energy	12
	5.	Center of Mass to Lab Frame Transformation of a Differential Cross	
		Section	14
	6.	Reduction of Gamma Noise in Moderated Fast Neutron Sources of	
		Thermal Neutrons	17
	7.	The DD Fusion Reaction and Generator—DD Neutron Yield	19
	8.	DD Fusion Neutron Source—Threshold Deuteron Projectile Energy and	
		Neutron Angular Energy Distribution	23
	9.	Nuclear-Resonant Fluorescence (NRF) Detection of Isotopes of Interest in	
		Gamma or Fast-Neutron-Interrogated Targets	28
	10.	Nuclear-Resonant Detection of Excited State Gammas Emitted from	
		Targets Interrogated by Fast Neutron Inelastic Scatter	34
	11.	Criteria for Nuclear Resonant Absorption of Target Isotope-Emitted	
		Gammas	40
	12.	Resonant Detection of Target-Emitted Gammas Depends on Angular	
		Position of Resonant Detector	43
	13.	Probability of Nuclear Resonant Detection of Target-Emitted Isotope	
		Gammas Verses Detector Angular Position	46
	14.	Range of Angles for Nuclear Resonant Detection of Target-Emitted	
		Gammas	48
	Re	ferences	52

	eutron Scatter Amplitude, Cross Section, Scatter Length, d d Refractive Index	5
1.	Wave and Particle Aspects of Neutrons	5
2.	Coherent and Incoherent, Elastic and Inelastic Neutron Scatter	5
3.	The Eikonal Equation for Neutron Optics	6
4.	The Eikonal Equation for a Stationary Wave Function Yields	
	a Refractive Index	6
5.	Scatter Cross Section Expressed by Neutron Scatter Amplitude	
6.	The Absorption Cross Section Expressed by the Neutron Probability	
	Density and Probability Current Density via the Continuity Equation	7
7.	The Absorption Cross Section Expressed by the Total Neutron Wave	
	Amplitude and Scatter Cross Section by the Scattered Neutron Wave	
	Amplitude	7
8.	Overview—Neutron Wave Amplitude and Cross Sections for Nuclear	
	Scatter	8
9.	The Schrödinger Equation for Neutron Scatter by a Spherical Nuclear	
	Potential	8
10.	The General Solution of the Schrödinger Equation for Nuclear Scatter	
	of Neutrons	(
11.	Boundary Conditions Applied to the Neutron Total Wave Amplitude	
	Solution	ç
12.	Angular Momentum of Partial Wave Components of the Asymptotic	
	Solution of the Total Neutron Wave Amplitude	10
13.	Neutron Scatter from the Nucleus—The Total Neutron Wave Amplitude	
	Solution	10
14.	Spherical Wave Representation of the Incident Neutron Plane Wave	1
15.	The Alternative, Total Wave Amplitude Solution of Assumed Form Uses	
	Scatter Amplitude to Describe the Neutron Scatter from Nucleus	1
16.	Neutron Scatter Amplitude Obtained by Equating the Schrödinger Wave	
	Equation Solution and the Alternative, Assumed Solution for the Total	
	Neutron Wave Amplitude	12
17.	The Neutron Scatter Cross Section and Total (Net) Neutron Wave	
	Amplitude Solution Obtained from the Neutron Scatter Amplitude	1.
18.	The Neutron Absorption Cross Section Obtained from the Neutron Total	
	Wave Amplitude	13
19.	Total Neutron Cross Section and Optical Theorem	13
20.	Total Neutron Wave Amplitude, Cross Sections, and Complex	
	Phase-Shift Angle	1
21.	Relation of Neutron Scatter Length to the Phase-Shift Angle and to the	
	Spherical Nuclear Potential and Radius	1
22.	Neutron Scatter Length and the Phase-Shift Angle, Scatter Amplitude, and	
	Cross Sections].

	23.	Resonant Neutron Scatter and Absorption—The Breit-Wigner Neutron	
		Cross Section	145
		Relation of the Refractive Decrement and Phase-Shift Angle	150
	25.	Neutron Scatter Time Corresponding the Scatter Length and Phase-Shift	
		Angle	153
	26.	Incident Total Scattered Waves are the Sum of Diverging and Converging	
		Waves via Scatter Coefficient—Alternative Derivations of Cross Sections	156
		Bound and Free Neutron Scatter Lengths	160
	28.	Neutron Scatter Length Accounting for Neutron Spin and Nuclear Spin	163
3.	Ne	eutron Scatter Physics and Differential Cross Sections	167
	1.	Inverse Relation Between Nuclear Excited State Linewidth and Lifetime	169
	2.	Derivation of the Breit-Wigner Equation for Neutron Scatter and	
		Absorption	171
	3.	The Dirac Delta Function	176
	4.	Basis and State Wave Functions—Operators and Eigenequations	178
	5.	Commutation of Operators and the Heisenberg Uncertainty Principle	180
	6.	The Hamiltonian Operator, the Schrödinger Equation, and Hermitian	
		Operators	181
	7.	Properties of the Hermitian Operator and Eigenvalue as Measured Physical	
		Quantities	183
	8.	Hermitian Operators and the Orthogonality of Basis Eigenfunctions	185
	9.	Examples of Hermitian Operators—Position and Momentum Operators	186
		Commutating Operators Share the Same Eignenfunctions	187
		Dirac Notation and Eigenequations	188
		Hilbert Space Basis of Quantum Mechanics and Neutron Scatter	190
	13.	Hilbert Space—Unitary Transformation Between Differing Basis	101
		Representations of a State Wave Function	191
	14.	Hilbert Space—Unitary-Similarity Transformation Between Operators of	100
		Differing Basis Representations of a State Wave Function	192
		Evolution of State Functions in Time via the Unitary Operator	193
	16.	Ehrenfest's Principle—Trajectories of Physically Measurable Expectation	107
		Values	197
		The Schrödinger and Heisenberg Pictures of Quantum Mechanics	199
		Obtaining the Heisenberg Operator from the Schrödinger Operator	201
		Equation of Motion of the Expectation Value of the Schrödinger Operator	203
		Equation of Motion of the Expectation Value of the Heisenberg Operator	204
		The Interaction Picture—Time-Dependent Perturbation	205
	22.	. The Interaction Picture—The Neutron Wave Function Equation of Motion	204
		in Scatter The Later Stier Birthman Congretor Equation of Motion	206 207
	23.	The Interaction Picture—Operator Equation of Motion	207

vii

Contents

	24.	The Interaction Picture—General Solution of Schrödinger Wave Equation for Neutron Scatter	208
	25.	Schrödinger Wave Equation Solution—The Lippmann-Schwinger Equation	
		in Dirac Form	209
	26.	Dirac Form of the Lippmann-Schwinger Equation Derived from the	
		Interaction Picture	212
	27.	Integral Lippmann-Schwinger Equation Derived from the Green's Function	
		Solution of the Schrödinger Equation	214
	28.	The Born Approximation Applied to the Lippmann-Schwinger Integral	
		Solution of the Schrödinger Wave Equation for Neutron Scatter	220
	29.	The Born Approximation, Fermi Pseudopotential, and Neutron Scatter	
		Length	221
		Derivation of Fermi's Golden Rule	223
	31.	Introduction—Differential and Partial Differential Neutron Scatter	
		Cross Sections	233
		Application of Fermi's Golden Rule to Neutron Scatter	235
		Neutron Scatter System in a Box	236
		General Neutron Differential Cross Section for Single Transitions	241
		Fermi Pseudopotential for Nuclear Scatter and Neutron Scatter Length	244
	36.	Differential Cross Section for Single Transitions—Evaluation of the	s .=
		Transition Integral	247
		General Neutron Partial Differential Cross Section for Single Transitions	250
	38.	The Squared Magnitude of Neutron Scatter Transition	
		Amplitude—Correlation of Scatter of the Neutron Plane Wave at Different	25.4
		Times by Different Nuclei or the Same Nucleus	254
	39.	Boltzmann Distribution of Nuclei—The Temperature Effect Initial State	257
		Distribution	257
		. The Density Operator	259
		General Neutron Partial Differential Cross Section for All Transitions	262
	42.	Application of the Schrödinger and the Heisenberg Pictures to General	264
	43	Neutron Partial Differential Cross Section for All Transitions General Neutron Partial Differential Cross Section—Coherent and	204
	43.		269
	Do	Incoherent Scatter	274
	Re	ferences	2/7
4.	Ki	nematic Neutron Scatter in Crystals without Lattice	
		brations	275
	1,	Introduction: Neutron Scatter from Crystals—The Kinematical Theory	275
	1. 2.	The Simple or Bravais Crystal Lattice—The Unit Cell and Direct Lattice	2,3
	۷.	Vectors	277
	3.	The Non-Bravais Crystal Lattice—Two or More Atoms per Unit Cell	278
	3. 4.	The Reciprocal Lattice and Reciprocal Lattice Vectors	279
	٦.	The Reciprocal Earlies and Reciprocal Earlies rectors	_,,

	5.	The Diffraction Condition	283
	6.	The Bragg and Laue Scattering Condition for Diffraction and Their Equivalence	287
	7.	The Ewald Sphere to Visualize Diffraction in the Reciprocal Lattice Space,	
	8.	First Brillouin Zone, and Wigner-Seitz Cell Elastic Differential Cross Section for Neutron Scatter from a Bravais Lattice	290
		Crystal	292
	9.	Diffraction Patterns and Images	296
5.	Tŀ	nermal-based Oscillations of Nuclei in a Crystal Lattice	301
	1.	Schrödinger Wave Solution of a Crystal Lattice of Simple Harmonic Oscillators	301
	2.	The Hamiltonian Operator for a Crystal Lattice of Simple Harmonic	
		Oscillators	306
	3.	The Hamiltonian Operator for a Crystal Lattice Represented by Ladder	308
	4	Operators The Average Displacement Amplitude of the Vibrating Nuclei of	300
	,,	the Crystal Lattice	317
	5.	Derivation of the Equivalent Exponential and Kronecker Delta Function	
		Expressions for the Crystal Lattice Vibration Wave Amplitude	323
		1D Crystal Lattice Vibration Modes	328
	7. 8.	3D Crystal Lattice Vibration Modes The Debye Model to Characterize Thermal Vibrations in the	334
	Ο.	Crystal Lattice	344
	Re	ference	348
6	Ki	nematic Neutron Scatter in Crystals with Lattice	
٠.		uclei Vibration	349
	1.	Non-Bravais Crystal with Nuclei Vibrations—Partial Differential	
		Cross Section	350
	2.	The Nucleus Displacement Vector in a Non-Bravais Crystal with	
		Nuclei Vibrations	356
	3.	•	2.40
		Partial Differential Cross Section for Non-Bravais Crystals	360
	4.	Kinematic, Coherent and Incoherent Partial Differential Cross Section for	369
	5.	a Non-Bravais Crystal with the Debye-Waller Factor The Cubic Bravais Lattice as Archetype Crystal—The Debye-Waller Factor,	309
	Э.	Debye Temperature, and Nuclei Displacement	374
	6.	Hooke's Law, the Stress Tensor, and Elastic Waves in Cubic Crystals	380
	7.	Neutron-Based Residual Stress Analysis	389
	8.	Kinematic Neutron Coherent and Incoherent Inelastic Scatter—Phonon	
		Exchange	392

ix

Contents

		Kinematic Elastic, Coherent and Incoherent, Differential Cross Sections Kinematic Inelastic, Coherent Partial Differential Cross	394
		Section—One-Phonon Neutron Scatter	399
	11.	Coherent, Inelastic One-Phonon Neutron Scatter in the Lab Frame is	
		Coherent, Elastic Scatter in the Rest Frame of Vibrating Crystal Nuclei	406
	12.	Conditions for Coherent, Inelastic One-Phonon Neutron Scatter	409
	13.	Kinematic Incoherent, Inelastic, Partial Differential Cross	
		Section—One-Phonon Neutron Scatter	411
	Ref	ferences	415
7.	Dy	namic Neutron Scatter	417
	1.	The Coupled Ewald Equations	418
	2.	Extinction in Crystals	421
	3.	Broadening of Neutron Diffraction Peaks	424
	4.	Characterization of Lattice Nuclei Vibrations as a Stationary Process	425
	5.	Average Nuclear Scatter Potential for Dynamic Neutron Scatter	
		in a Crystal	426
	6.	Average Nuclear Scatter Potential for Crystal Lattice: Average of Neutron	
		Scatter Lengths and Boltzmann Thermal-Based Distribution of Initial	
		Nuclear States	428
	7.	Time-Independent Schrödinger Equation for Dynamic Neutron Scatter	
		in a Perfect Crystal	432
	8.	No-Bragg Condition in Time-Independent Schrödinger Equation Solution	
		for a Perfect Crystal Yields Standard Refractive Index without Regard to	
		Material Structure	434
	9.	Near-Bragg (Laue Case) of Solution of Time-Independent Schrödinger	
		Equation for Dynamic Neutron Scatter in a Perfect Crystal	437
	10.	Two Amplitude Summation Pairs of Transmitted and Bragg-reflected	
		(Laue Case) Waves in a Perfect Crystal Cause Anomalous Absorption at the	42.0
		Bragg Condition	439
		Anomalous Absorption in a Perfect Crystal	445
		Neutron Wave Pair in a Perfect Crystal: Transmitted Neutron Fluxes	447
	13.	Double-Valued Wave Numbers and Refractive Indices for a Perfect Crystal	
		Wave Pair Created by an Incident Wave that Meets the Bragg Condition	450
	3.4	(Laue Case)	450
	14.	Wave Amplitude and Intensity for the Wave Pair in the Perfect Crystal at	457
	1.	the Bragg Condition for the Laue Case	456
	15.	Interference of Brigg-reflected Waves in a Perfect Crystal: Pendellösung	140
	1/	Fringes and Primary Extinction Particular of the Neutron Transport Equation for Neutron Scatter in	460
	16.	Derivation of the Neutron Transport Equation for Neutron Scatter in	465
		Mosaic Crystals	400

ln	Index	507
C	Contents of Volumes 151–172	499
	References	497
	Sections for Averaged Nuclear Potential in a Crystal	493
	23. Coherent and Incoherent Elastic Cross Sections and Differential C	ross
	 Coherent and Incoherent Partial Differential Cross Section for Ave Nuclear Potential in a Crystal 	eraged 488
	Crystal	482
	21. Partial Differential Cross Section for Averaged Nuclear Potential in	
	Two-Beam (Bragg) Cases for a Planar Mosaic Crystal	478
	20. Solution of the Darwin Equations for the One-Beam (Off-Bragg) ar	nd
	Darwin Equation for Neutron Scatter in a Mosaic Slab Crystal	476
	19. Single Bragg Reflection for Generalized Darwin Equations Yields C	ordinary
	Equations	473
	18. Neutron Transport Equation Solved to Yield Generalized Darwin	.,
	Crystal	470
	Scatter and Absorption Cross Sections per Unit Volume in a Mosa	
	17. Expression of the Neutron Transport Equation by Macroscopic Ne	utron