Contents

Fo	rew	ord	Х
Pre	efac	е	χV
Cc	Contributor		
Fu	ture	Contributions	xix
1.	In	troduction to Neutron and X-ray Optics	1
	1.	Compound Refractive Lenses for Neutrons and X-rays: Background and Theory	2
	2.	Experiments with Neutron Compound Refractive Lenses, Magnetic Lenses, and Microscopes	
	3.	•	100
	۶. 4.	6 - F - y, and a start y and thrade	100
	_	Imaging	199
	5.	Experiments in Fast Neutron Radiography	237
	6.	A Brief History of Neutron Optics Before Compound Refractive Neutron Lenses	272
	7.	Brief History and Overview of Diffractive and Reflective X-ray Optics and	
		Microscopy	282
	Re	eferences	312
2.	Co	ompound Refractive Lenses and Prisms	335
	1.	The Compound Refractive Lens	336
	2.	Numerical Aperture and Thin Lenses	338
	3.	Biconcave Parabolic Lens: Path Length, Focal Length, and Absorption	
		Aperture Radius	339
	4.	Biconcave Spherical Lens: Path Length, Focal Length, and Absorption	
	_	Aperture Radius	346
	5.	Parabolic Aperture Radius in Spherical Biconcave CRLs	349
	6.	Matrix Representation of X-ray and Neutron Optics with Paraxial	
	_	Approximation	350
	7.	Thin Lens Matrix and Ray Angle Deviation in a Thin Lens	353
	8.	Average CRL Transmission for X-rays or Neutrons	358
	9.	CRL Intensity Gain Including Attenuation	361

	10.	CRL Transverse and Axial Magnification	368
	11.	CRL Depth of Field and Depth of Focus	371
	12.	Modulation Transfer Function for CRL Resolution Determination	373
	13.	Calculation of CRL Modulation Transfer Function by Line Profile	
		Measurements of Knife-Edge Images	377
	14.	CRL Field of View	380
	15.	Thick Lens CRLs	382
	16.	CRL Surface Roughness and Lens Alignment	390
	17.	Compound Refractive Prisms: X-ray and Neutron Deflection by a Single	
		Prism	398
	18.	Deflection of X-rays and Neutrons in a Compound Refractive Prism	402
	19.	Calculation of X-ray or Neutron Absorption Aperture Depth and	
		Transmission in a Compound Refractive Prism	404
	20.	Use of a Compound Refractive Prism to Offset Neutron Gravity Droop in	
		Small-Angle Scattering	406
	21.	Curvature and Radius of Curvature of Lens Surface and Wave Surface	409
	22.	Measurement of Spherical and Parabolic Lens Curvature	411
	23.	Wave Vergence and Wave Vergence Change by Lens Surface	413
	24.	Refractive Index, Snell's Law, Huygens' Principle, and Fermat's Principle of Least Time	414
	25.	The Paraxial Approximation and the Fundamental Paraxial Equation	417
	26.	The Gaussian Lens Equation for Thin Lenses	418
	27.	Thick Lens Power and Focal Length, and Wave Vergence Change in Thick	
		Lenses	420
	28.	Wave Vergence Change and Power and Focal Length of a Separated Lens Doublet	424
	Re	ferences	426
3.	Ge	eometric Neutron and X-ray Optics — Aberrations	429
	1.	Chromatic Aberration in Spherical and Parabolic Biconcave Lenses	430
	2.	Spherical Aberration in Spherical Biconcave Lenses and Total Object	
		Resolution	434
	3.	CRL Image and Object Resolution: Spherical and Chromatic Aberration	438
	4.	CRL Aberrations: Astigmatism, Curvature of Field, Coma, and Distortion	444
	5.	Parabolic and Spherical Waves Converge to Different Focal Points by CRL	450
	6.	Monochromatic and Chromatic Aberrations Occur in Parabolic and	
		Spherical Lenses	453
	7.	Aberrations from an Imperfect Spherical Lens Surface	456
	8.	Derivation of the Five Seidel Monochromatic Aberrations of a Spherical	
		Biconcave Lens	46

Contents	vii
Contents	VII

	9.	Relation of the Optical Path Length Difference to its Associated	
		Aberration	470
	10	. Spherical Aberration	473
	11.	Coma	475
	12.	Coma: The Abbe Sine Condition and the Coddington Shape Factor	477
	13.	Curvature of Field and the Petzval Condition	479
	14.	Astigmatism	481
	15.	Combined Astigmatism and Curvature of Field	483
	16.	Astigmatism: Sturm's Interval and Remedy by Upstream Aperture Stop	485
	17.	Distortion	487
		Images without and with Distortion	490
		Prevention of Distortion and the Petzval Condition	492
	20	. Distortion in Compound Refractive Lens Imaging with Synchrotron X-ray	
		Sources	494
	Re	ferences	495
4	v	O	
4.	X-	ray Optics	497
	1.	Damped Resonance for Driven Atomic Electron Oscillation and X-ray	
		Emission	498
	2.	The Complex Atomic Scatter Factor for a Single Element	502
	3.	The Complex Atomic Scatter Factor for a Mixture or Compound	503
	4.	Maxwell's Equations Yield the Electromagnetic Vector Wave Equation in	
		Material Media	505
	5.	The Electromagnetic Vector Wave Equation Contains the Refractive Index	506
	6.	The Complex Refractive Index and the Complex Atomic Scatter Factor	508
	7.	The Complex Refractive Index—Decrement, Absorption Index, and Linear	
		Attenuation	510
	8.	X-ray Complex Index of Refraction—Kramers—Kronig Relation	513
	9.	X-ray Rayleigh Scatter Total Cross Section and the Complex Atomic Scatter	
		Factor	514
	10.	Differential Cross Section for the Rayleigh Scatter and Complex Atomic	
		Scatter Factor	517
		Rayleigh and Thomson X-ray Scatters are Coherent, Elastic Scatter	519
		Compton Scatter of X-rays is Incoherent and Inelastic	521
		X-ray Attenuation by Photoelectric Absorption	525
	14.	X-ray Absorptive Attenuation by Pair Production	527
		Collision Losses of Charged Particle Passage in Matter	528
		Bremsstrahlung from Charged Particle Passage in Matter	536
	17.	Forward-Directed Bremsstrahlung from Relativistic Electrons Undergoing	
		Acceleration	538

	18. X-ray Wave Packets—Phase Velocity and Group Velocity, Sp Spectral Widths	atial and 541
	19. X-ray Wave Packets—Dispersion and Group Velocity, and Re	
	Part of Complex Atomic Scatter Factor	544
	20. X-rays in Material Medium—Phase and Group Velocity and	ruise 548
	Broadening Co	
	21. Reflection and Transmission of X-rays at a Planar Interface of 22. Fraction of Transmitted and Reflected Polarized X-rays with	an Electric
	Field Component Parallel to the Planar Surface Interface	554
	23. Fraction of Transmitted and Reflected Polarized X-rays with Field Component Parallel to the Planar Surface Interface	a Magnetic 556
	24. X-ray Brewster Angle Occurs Only for Electric Field Parallel	to Plane of
	Incidence	557
	References	559
5.	Neutron Optics	561
	1. Neutron Phase and Group Velocity	561
	2. Derivation of the Schrödinger Wave Equation for Neutron \	Vave 566
	3. Derivation of the Schrödinger Wave Equation by the Electro	
	Equation Analogy	568
	4. Derivation of the Schrödinger Wave Equation by Assumption	on of the
	Neutron Plane Wave Solution	572
	5. Operator form of the Schrödinger Wave Equation for a Neu	itron Wave 574
	6. Reflection and Transmission of Neutrons at Media Interface	
	7. Neutron Reflectometry	582
	8. Measurement of the Complex Refractive Index via Refraction	on 588
	9. X-ray and Neutron Interferometry	590
	10. Interferometry and the Fizeau Effect	592
	11. Pendellösung Oscillations and Anomalous Absorption in Pe	rfect Crystals 596
	12. Measurement of Refractive Index via Interferometry	601
	13. The Maxwell–Boltzmann Distribution for the Reactor Source	ce of Thermal
	Neutrons	603
	References	606
6.	. X-ray and Neutron Optics	607
	Derivation of the Index of Refraction for X-rays and Neutro	
	2. Types of X-ray and Neutron Lenses and Significance of Delt	
	3. Coherent, Incoherent, Elastic, and Inelastic Scatter of X-ray.	
	4. X-ray and Neutron Attenuation Comparison	619 and Neutrons
	5. Useful Formulas for X-rays and Neutrons	
	6. X-ray Multilayer Mirrors	622
	7. Neutron Multilayer Mirrors	624
	7. INEUTION MUTHAGE MINIOIS	636

	Contents	ix
8. Capillary Optics and Kumakhov X-ray and Neutron Lenses		641
Bright-field, Dark-field, and Phase-Contrast Microscopy		646
References		653
Contents of Volumes 151–171		655
Index		663