MULTIDIMENSIONAL INCOHERENT TIME-RESOLVED SPECTROSCOPY AND COMPLEX KINETICS	1
By Mark A. Berg	
Complex Multiconfigurational Self-Consistent Field-Based Methods to Investigate Electron-Atom/Molecule Scattering Resonances	103
By Kousik Samanta and Danny L. Yeager	
DETERMINATION OF MOLECULAR ORIENTATIONAL CORRELATIONS IN DISORDERED SYSTEMS FROM DIFFRACTION DATA	143
By Szilvia Pothoczki, László Temleitner, and László Pusztai	
RECENT ADVANCES IN STUDYING MECHANICAL PROPERTIES OF DNA	169
By Reza Vafabakhsh, Kyung Suk Lee, and Taekjip Ha	
Viscoelastic Subdiffusion: Generalized Langevin Equation Approach	187
By Igor Goychuk	
EFFICIENT AND UNBIASED SAMPLING OF BIOMOLECULAR SYSTEMS IN THE CANONICAL ENSEMBLE: A REVIEW OF SELF-GUIDED LANGEVIN DYNAMICS	255
By Xiongwu Wu, Ana Damjanovic, and Bernard R. Brooks	
Author Index	327
Subject Index	345

MULTIDIMENSIONAL INCOHERENT TIME-RESOLVED SPECTROSCOPY AND COMPLEX KINETICS

MARK A. BERG

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA

- I. Introduction
 - A. Multidimensional Kinetics Versus Multidimensional Coherent Spectroscopy
 - B. MUPPETS Approach to Multidimensional Kinetics
 - C. Overview
- II. Multidimensional Correlation Functions
 - A. Frequency Correlation Functions in Coherent Spectroscopy
 - 1. Spectral Line Broadening and Motional Narrowing
 - 2. 2D Coherent Echoes: Separating Homogeneous and Inhomogeneous Line Broadening
 - 3. Stimulated Echo Spectroscopy: Measuring Spectral Diffusion
 - B. Rate Correlation Functions in Incoherent Spectroscopy
 - 1. Rate Dispersion and Motional Narrowing of Rates
 - 2. 2D Rate "Echoes": Separating Homogeneous and Heterogeneous Rate Dispersion
 - 3. Rate "Stimulated Echoes": Measuring Exchange Times
 - C. Equilibrium Versus Nonequilibrium Processes
 - D. Rate Cross-Correlation Functions
- III. Spectral Representations of Kinetic Data
 - A. One-Dimensional Rate Spectra
 - 1. Time Decays Versus Rate Spectra
 - 2. Uniqueness of Rate Spectra
 - 3. Homogeneous-Heterogeneous and Similarity Approximations
 - 4. Differences Between Rate and Frequency Spectra
 - B. Representations of Multidimensional Kinetic Data
 - 1. Time-Time Representations: Rate Filtering
 - 2. Time-Rate Representations: Rate Hole-Burning Spectra

^{© 2012} John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

- 3. Rate-Rate Representations: Rate Correlation Spectra
- IV. Theory of MUPPETS Measurements
 - A. General Incoherent Experiments
 - 1. Hilbert Spaces: Incoherent, Coherent, and Liouville
 - 2. Defining the Incoherent Hilbert Space
 - 3. Perturbation Pathway Description of MUPPETS
 - B. Optical MUPPETS
 - 1. Basis Sets for Optical States
 - 2. Optical Transition and Detection Operators
 - 3. Two-Level Systems and Effective Transition Operators
 - 4. Visualizing Complex States and Signals
 - 5. Evaluating Pathways for Optical MUPPETS
 - C. Examples of New Theoretical Results
 - 1. Magic Angles and Orientational Gratings in 2D
 - 2. Thermal Gratings: Pathway Cancellation
 - 3. Enantiometric Pathways and Incoherent Entangled States
 - 4. MUPPETS "Stimulated Echoes"
- V. Experimental Implementation of MUPPETS
 - A. Optical Design Criteria
 - 1. Current MUPPETS Design
 - 2. Why Transient Gratings?
 - 3. Why Heterodyne Detection?
 - 4. Why Diffractive Optics?
 - 5. Why Lenses?
 - B. Heterodyne Detection with Two Detectors
 - 1. Symmetric Detection with Automatic Phase Calibration
 - 2. Differential Detection to Eliminate Third-Order Bleaching Signals
- VI. Experimental Examples of Analyzing MUPPETS Data
 - A. Electron Trapping in CdSe Nanoparticles: Graphical Analysis
 - B. Reaction Dynamics in an Ionic Liquid: Model Fitting
 - C. Dye Mixtures: Multicomponent Inversion
- VII. Future of MUPPETS

Acknowledgments

COMPLEX MULTICONFIGURATIONAL SELF-CONSISTENT FIELD-BASED METHODS TO INVESTIGATE ELECTRON-ATOM/MOLECULE SCATTERING RESONANCES

KOUSIK SAMANTA^{1,2} AND DANNY L. YEAGER²

¹Department of Chemistry, Texas A& M University, College Station, TX 77843, USA

²Department of Chemistry, Rice University, Houston, TX 77005, USA

- I. Introduction
- II. Theory
 - A. The Complex Scaling Method
 - 1. Background
 - 2. Complex Scaling Transformation
 - 3. Spectrum of the Complex Scaled Hamiltonian
 - 4. Trajectory Method for the Calculation of the Resonance Energy
 - 5. Properties of the Eigenfunctions of the Complex Scaled Hamiltonian
 - B. Modified Second Quantization Algebra for CCBON Spin Orbitals
 - 1. Creation and Annihilation Operators
 - 2. Relevant Quantum Mechanical Operators in the Modified Second Quantization Language
 - C. The Quadratically Convergent Complex Multiconfigurational Self-Consistent Field Method
 - D. Constrained Optimization Algorithm for CMCSCF
 - 1. Review of the Step-Length Control Algorithm in MCSCF
 - 2. Step-Length Control in CMCSCF
 - E. The M₁ Method
 - F. Analysis of the Orbitals

Advances in Chemical Physics, Volume 150, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

^{© 2012} John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

- III. Applications: Results and Discussions
 - A. Application of the \triangle CMCSCF Method to Study ${}^{2}P$ Be⁻ Shape Resonances
 - 1. Computational Details
 - 2. Resonance Positions and Widths
 - 3. Analysis of the Orbitals
 - B. Effects of Higher Angular Momentum Orbitals in the CAS on the Positions and the Widths of a Shape Resonance
 - 1. Computational Details
 - 2. Resonance Positions and Widths
 - 3. Analysis of the Orbitals
 - C. Application of the M₁ Method to Study ²P Be⁻ Shape Resonances
 - 1. Computational details
 - 2. Resonance Positions and Widths
 - 3. Analysis of the Orbitals
 - D. Investigation of Molecular Resonances
 - 1. Computational Details
 - 2. Resonance Positions and Widths
- IV. Summary and Conclusions

Acknowledgments

DETERMINATION OF MOLECULAR ORIENTATIONAL CORRELATIONS IN DISORDERED SYSTEMS FROM DIFFRACTION DATA

SZILVIA POTHOCZKI¹, LÁSZLÓ TEMLEITNER², AND LÁSZLÓ PUSZTAI²

¹Grup de Caracterització de Materials, Departament de Física i Enginyeria Nuclear, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia, Spain

²Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences (RISSPO HAS), H-1121 Budapest, Konkoly Thege út 29-33, Hungary

CONTENTS

- I. Introduction
- II. Preparation of Particle Configurations from Diffraction Data
 - A. Reverse Monte Carlo Structural Modeling
 - B. Preparation of the Reference Structures: Fused Hard Sphere Monte Carlo
 - C. Other Methods for Preparing Suitable Structural Models
- III. Methods for Characterizing Orientational Correlations from Particle Configurations
 - A. Correlation Functions for Linear Molecules and/or Molecular Dipoles
 - 1. Distance Dependent Dipole-Dipole Correlation Function
 - 2. Special Correlation Functions for Linear Molecules or Dipoles
 - B. Perfect Tetrahedral Molecules Without Unique Symmetry Axes: Rey-Constructions
 - C. Tetrahedral Molecules with Unique Symmetry Axes: Molecules with $c_{2\nu}$ and $c_{3\nu}$ Symmetry
 - D. More Complex Tools for Characterizing Molecular Orientations
- IV. Summary

Acknowledgments

Advances in Chemical Physics, Volume 150, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

^{© 2012} John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

RECENT ADVANCES IN STUDYING MECHANICAL PROPERTIES OF DNA

REZA VAFABAKHSH¹, KYUNG SUK LEE¹, AND TAEKJIP HA^{1,2}

¹Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA ²Howard Hughes Medical Institute, Urbana, IL 61801, USA

- I. Introduction
- II. The Worm-Like Chain (WLC) Model for DNA
- III. Ensemble Methods for Studying DNA Mechanical Properties
- IV. Single-Molecule Techniques to Study DNA Mechanical Properties
- V. Different Stretching Modes of DNA
- VI. ION and Temperature Effect
- VII. Sequence Dependence of DNA Flexibility
- VIII. The Dynamical Properties of DNA
- IX. Outlook
- References

VISCOELASTIC SUBDIFFUSION: GENERALIZED LANGEVIN EQUATION APPROACH

IGOR GOYCHUK

Institute of Physics, University of Augsburg, Universitättsstr. 1, D-86135 Augsburg, Germany

CONTENTS

- I. Introduction
- II. Phenomenological Description of Linear Viscoelasticity in Complex Media
 - A. Earlier Theories
 - 1. Maxwell Viscoelastic Fluid and Voigt-Kelvin Elastoviscous Solid: Emergence of Friction with Memory
 - 2. Generalized Maxwell Model
 - 3. Power Law Memory Kernel and Fractional Time Derivatives
 - 4. Hydrodynamic Memory Effects
 - B. Approximating Power Law by a Sum of Exponentials: How Big is the Difference?
 - C. What is Measured?
 - D. Physical Origin of Viscoelastic Power Law Kernels
- III. Generalized Langevin Equation
 - A. Phenomenological Justification
 - 1. Gaussian Random Force and Fluctuation-Dissipation Relation
 - B. Markovian Embedding of GLE Dynamics Within a Generalized Maxwell Model of Viscoelasticity
 - C. Power Law Memory, Fractional Gaussian Process, Fractional Brownian Motion, and Fractional Langevin Equation
 - 1. Comparison of the Exact Solution of FLE and the Result of Markovian Embedding
 - D. Physical Features
 - 1. Principal Difference with CTRW Semi-Markov subdiffusion, Ergodicity
- IV. Anomalous Dielectric Response and Aging
 - A. Stationary Response Within GLE Description
 - B. Aging and Death of Linear Response for Subdiffusive CTRW: Different Kinds of Aging

Advances in Chemical Physics, Volume 150, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

^{© 2012} John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

- V. Subdiffusive Escape and Bistable Dynamics
 - A. Markovian Rate Theory
 - B. Non-Markovian Fokker-Planck Equation and non-Markovian Rate Theory
 - 1. Hänggi and Mojtabai Derivation of the Grote and Hynes Rate Expression
 - 2. Ultraslow Intrawell Relaxation and Its Consequences: Slow and Fast Noise Modes and Fluctuating non-Markovian Rate
 - C. Numerics for Bistable Subdiffusive Dynamics: Ultraslow Kinetics, Bursting, and Negative Correlations of Residence Times in Two Wells (Comparison with non-Markovian Rate Theory)
- VI. Subdiffusion and Transport in Periodic Potentials
 - A. Static Potentials
 - 1. Subdiffusion and Transport in Washboard Potentials
 - 2. Universal Features of the FFPE Subdiffusion and Transport
- VII. Periodically Driven Subdiffusion and Anomalous Subdiffusive Ratchets

VIII. Summary

Acknowledgment

Appendix A: Standard Hamiltonian Model of Generalized Brownian Motion

- A.1. Spectral Bath Densities Yielding Anomalous Diffusion and Fractional Gaussian Noise
- Appendix B: Exact Solutions of GLE and Fokker-Planck Equations
 - B.1. Exact solutions
 - B.2. Overdamped Limit
 - B.3. Free Diffusion and Diffusion Biased by a Constant Force
 - B.3.1. Non-Markovian Fokker-Planck Equation for Free or Biased Subdiffusion
 - B.4. Comparison with Fractional Fokker-Planck Equation

EFFICIENT AND UNBIASED SAMPLING OF BIOMOLECULAR SYSTEMS IN THE CANONICAL ENSEMBLE: A REVIEW OF SELF-GUIDED LANGEVIN DYNAMICS

XIONGWU WU¹, ANA DAMJANOVIC^{1,2}, AND BERNARD R. BROOKS¹

¹Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 5635 Fishers Lane, Bethesda, MD 20892-9314, USA

²Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA

- I. The Conformational Search Problem
- II. History of the SGMD and SGLD Methods
- III. Thermodynamics of SGMD and SGLD
 - A. Low-Frequency and High-Frequency Properties
 - B. SGMD and SGLD Simulation Methods
 - C. Conformational Distribution in SGLD
 - D. Conformational Search in SGLD
 - E. Force-Momentum-Based Self-Guided Langevin Dynamics Simulation Method
- IV. Characteristics of the Self-Guided Langevin Dynamics
 - A. The Skewed Double Well System
 - B. Argon Fluid
 - C. Alanine Dipeptide
 - D. Folding of a Pentamer Peptide
- V. Applications
 - A. Protein Folding
 - B. Molecular Modeling and Docking
 - C. Protein Conformational Transitions
 - D. Surface Adsorption
 - E. Crystallization and Phase Transitions

Advances in Chemical Physics, Volume 150, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

^{© 2012} John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

VI. Summary Acknowledgment References

