

# **CONTENTS**

| QUANTUM DYNAMICAL RESONANCES IN CHEMICAL REACTIONS:<br>FROM A + BC TO POLYATOMIC SYSTEMS | 1   |
|------------------------------------------------------------------------------------------|-----|
| By Kopin Liu                                                                             |     |
| THE MULTISCALE COARSE-GRAINING METHOD                                                    | 47  |
| By Lanyuan Lu and Gregory A. Voth                                                        |     |
| Molecular Solvation Dynamics from Inelastic X-Ray Scattering Measurements                | 83  |
| By R. H. Coridan and G. C. L. Wong                                                       |     |
| POLYMERS UNDER CONFINEMENT                                                               | 129 |
| By M. Muthukumar                                                                         |     |
| COMPUTATIONAL STUDIES OF THE PROPERTIES OF DNA-LINKED NANOMATERIALS                      | 197 |
| By One-Sun Lee and George C. Schatz                                                      |     |
| Nanopores: Single-Molecule Sensors of<br>Nucleic Acid-Based Complexes                    | 251 |
| By Amit Meller                                                                           |     |
| Author Index                                                                             | 269 |
| SUBJECT INDEX                                                                            | 283 |



# QUANTUM DYNAMICAL RESONANCES IN CHEMICAL REACTIONS: FROM A + BC TO POLYATOMIC SYSTEMS

#### **KOPIN LIU**

Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan; Department of Physics, National Taiwan University, Taipei 10617, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan

## **CONTENTS**

- I. Introduction
- II. A Few Basic Concepts
  - A. What is the Quantum Dynamical or Reactive Resonance?
  - B. Classification of Transition-State Resonances
  - C. Vibrational-Adiabatic View of a Reactive Resonance
  - D. Characteristics of Various Resonances
- III. Experimental Approaches
- IV. The Benchmark F + HD Reaction
  - A. Historical Background
  - B. Resonance Signatures and Their Physical Origins
    - 1. Integral Cross Section
    - 2. Differential Cross Section
  - C. The Nature of the Resonance State
  - D. Lessons from This Benchmark Study
- V. An Obvious Extension: F + Methane
  - A. Pair-Correlated ICS of the F + CHD<sub>3</sub> Reaction
  - B. Pair-Correlated DCS of the  $F + CHD_3$  Reaction
  - C. A Case Study of Conformational Resonant Complexes
  - D. F + CH<sub>4</sub>: Intramolecular Vibrational Energy Redistribution Within the Resonant Complex
- VI. A Less-Obvious Reaction: Cl + Methane
  - A. Hint of Resonance in the Ground-State Reaction of Cl + CH<sub>4</sub>

Advances in Chemical Physics, Volume 149, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

<sup>© 2012</sup> John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

2 KOPIN LIU

- B. More Evidence from the Reaction with CH Stretch-Excited CHD<sub>3</sub> ( $v_1 = 1$ )
- C. Visualization of the Resonance and the Reaction Path

VII. Summary and Outlook

Acknowledgments

# THE MULTISCALE COARSE-GRAINING METHOD

# LANYUAN LU AND GREGORY A. VOTH

Department of Chemistry, James Franck and Computation Institutes, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA

#### **CONTENTS**

- I. Introduction
- II. Methodology
  - A. Definition of a Consistent CG Model
  - B. Calculation of a CG Force Field
  - C. Basis Functions
  - D. Numerical Algorithms
  - E. Transferring CG Potentials Between Temperatures
  - F. MS-CG for an Isothermal-Isobaric Ensemble
  - G. Incorporating Other Force Fields
  - H. Other Extensions
- III. Results
  - A. One-Site CG Methanol
  - B. One-Site CG Water
  - C. Lipid Bilayer
- IV. Conclusion

Acknowledgments



# MOLECULAR SOLVATION DYNAMICS FROM INELASTIC X-RAY SCATTERING MEASUREMENTS

R. H. CORIDAN<sup>1</sup> and G. C. L. WONG

Department of Bioengineering, Department of Chemistry and Biochemistry, and California NanoSystems Institute, University of California,

Los Angeles, CA 90024, USA

#### **CONTENTS**

- I. Introduction
- II. Review of High-Resolution Inelastic X-Ray Scattering on Liquid Water: Theory and Experiment
  - A. Static Structure from Elastic X-Ray Scattering Experiments
  - B. Dynamic Structure from Inelastic X-Ray Scattering Experiments
  - C. Experimental meV Inelastic X-Ray Scattering
- III. Green's Function Imaging of Dynamics with Femtosecond Temporal and Angstrom Spatial Resolution
  - A. Dynamical Response Function Extraction from meV IXS Measurements
  - B. Comparing  $\chi(r, t)$  to Established Measurements
  - C. An Example of GFID Reconstructed Movies: The Evolution of Hydration Around an Accelerating Point Charge
- IV. An excluded volume implementation for Green's Function Imaging of Dynamics
  - A. Green's Function Imaging of Dynamics with Excluded Volume
  - B. Linear Response Formalism with Excluded Volume
  - C. Examples
    - 1. Static Hydration Structure Around Ions
    - 2. Dynamical Hydration Structure Around Dynamical Charge Distribution: Coumarin Photoexcitation
    - 3. Hydration of a Surface with Time-Independent Excluded Volume
  - D. Discussion

Advances in Chemical Physics, Volume 149, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

<sup>&</sup>lt;sup>1</sup> Current address: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125

V. Conclusions and Outlook



# POLYMERS UNDER CONFINEMENT

# M. MUTHUKUMAR

Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA

## **CONTENTS**

- I. Introduction
- II. Models of a Polymer Chain
  - A. Gaussian Chain
  - B. Chain with Excluded Volume Interaction
  - C. SCFT of a Polyelectrolyte Chain
  - D. Variational Theory of a Polyelectrolyte Chain
  - E. Semiflexible Chain
- III. Anisotropic Confinement
- IV. Confinement in Spherical Cavities
  - A. Confined Gaussian Chain
  - B. Anchored Gaussian Chain
  - C. Partial Confinement into a Sphere
  - D. Partition Between Two Spheres
  - E. Chain with Excluded Volume Interaction
  - F. Thermodynamic Argument
  - G. Polyelectrolyte Chain
  - H. Encapsulation of a Polyelectrolyte
  - I. Virus Assembly
- V. Confinement in Cylindrical Cavities
  - A. Gaussian Chain
  - B. Scaling Arguments
    - 1. Flexible Chain
    - 2. Semiflexible Chain
- VI. Confinement in Slab-Like Geometries
- VII. Conclusions

Acknowledgments

Advances in Chemical Physics, Volume 149, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

<sup>© 2012</sup> John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

# COMPUTATIONAL STUDIES OF THE PROPERTIES OF DNA-LINKED NANOMATERIALS

#### ONE-SUN LEE AND GEORGE C. SCHATZ

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

# **CONTENTS**

- I. Introduction
- II. Optical Properties of DNA-Au NPs
  - A. What Controls the Optical Properties of DNA-Au NPs Assemblies?
  - B. Theoretical Approaches for the Optical Responses of DNA-Au NPs
  - C. Structural Basis for the Optical Properties
- III. Melting Properties of DNA-Au NPs
  - A. What Controls the Melting Properties of DNA-Au NPs Assemblies?
    - 1. Experimental Results
  - B. Model for Thermodynamic Melting
  - C. The Relation Between Local Salt Concentration and  $T_{\rm m}$
  - D. Proof of Neighboring Duplex Cooperative Melting
  - E. Phase Separation Approach
  - F. Melting of DNA-Functionalized Organic Molecules
- IV. Structural Properties of the Self-Assembled Materials
  - A. Fractal Structures of DNA-Au NPs Assemblies
  - B. Ordered Structures of DNA-Au NPs Assemblies
- V. Conformation of DNA
  - A. Conformation of Double-Stranded DNA Between Gold Surfaces
  - B. Conformation of Double-Stranded DNA on Gold Surface
  - C. Conformation of Single-Stranded DNA on Gold Surface
- VI. Conclusion
- Acknowledgments
- References

Advances in Chemical Physics, Volume 149, First Edition. Edited by Stuart A. Rice and Aaron R. Dinner.

<sup>© 2012</sup> John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



# NANOPORES: SINGLE-MOLECULE SENSORS OF NUCLEIC ACID-BASED COMPLEXES

# **AMIT MELLER**

Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA Department of Biomedical Engineering, The Technion Haifa, Israel 32000

# **CONTENTS**

- I. Introduction
- II. DNA Capture and Translocation Processes
  - A. DNA Capture
  - B. Experiments Measuring the DNA Capture Rate
  - C. DNA Translocation
- III. Probing DNA/Small Molecule Interactions
- IV. Nanopore-Based Genomic Profiling Using Sequence-Specific Probes
- V. Summary

Acknowledgments