Contents

1		duction to Permutations, Markov Chains,	
	1.1	Permutations and Their Matrix Representations	
	1.2	Permutation Orbits and Fixed Points	
	1.3	Fixed Points and the Inclusion-Exclusion Principle	
	1.4	Finite Markov Chains	
	1.5	Birkhoff-von Neumann Theorem	
	1.6	Generating Functions	
	1.7	Partitions	
		1.7.1 Compositions 1	
		1.7.2 Multi-set Permutations	
		1.7.3 Weak Partitions	
		1.7.4 Integer Partitions	
	1.8	Concluding Remarks and Further Reading 1	
2	Wort	h Another Binary Relation: Graphs 1	
	2.1	Binary Relations and Their Graphs	
	2.2	Representation of Graphs by Matrices	
	2.3	Algebraic Properties of Adjacency Operators	
	2.4	Perron–Frobenius Theory for Adjacency Matrices	
	2.5	Spectral Decomposition of Adjacency Operators	
	2.6	Adjacency and Walks on a Graph	
	2.7	Principal Invariants of the Graph Adjacency Matrix	
	2.8	Euler Characteristic and Genus of a Graph	
	2.9	Euler Characteristics and Genus of Complex Networks	
	2.10	Coloring a Graph	
	2.11	Shortest Paths in a Graph	
	2.12	Concluding Remarks and Further Reading	

x Contents

3	Pern	nutations Sieved Through Adjacency: Graph	43		
	Automorphisms				
	3.1	Graph Automorphisms	43		
	3.2	Nontrivial Graph Automorphisms and the Structure			
		of Eigenvectors of the Adjacency Matrix	45		
	3.3	Automorphism Invariant Linear Functions of a Graph	47		
		3.3.1 Automorphism Invariant Stochastic Processes	48		
		3.3.2 Automorphism Invariant Harmonic Functions	49		
	3.4	Relations Between Eigenvalues of Automorphism			
		Invariant Linear Functions	51		
	3.5	Summary	54		
4	Exploring Undirected Graphs by Random Walks				
	4.1	Graphs as Discrete Time Dynamical Systems	56		
	4.2	Generating Functions of the Transition Probabilities	57		
	4.3	Cayley-Hamilton's Theorem for Random Walks	58		
	4.4	Stationary Distribution and Recurrence Time of Random Walks	59		
	4.5	Entropy of Random Walks Defined on a Graph	61		
	4.6	Hyperbolic Embeddings of Graphs by Transition Eigenvectors	64		
	4.7	Exploring the Shape of a Graph by Random Currents	68		
	4.8	Summary	72		
5	Embedding of Graphs in Probabilistic Euclidean Space				
	5.1	Methods of Generalized Inverses in the Study of Graphs	73		
	5.2	Affine Probabilistic Geometry of Pseudo-inverses	75		
	5.3	Reduction to Euclidean Metric Geometry	76		
	5.4	Probabilistic Interpretation of Euclidean Geometry	77		
	5.5	Probabilistic Embedding of Simple Graphs	79		
	5.6	Group Generalized Inverse of the Laplace Operator			
		for Directed Graphs	81		
	5.7	Summary	83		
6	Ran	dom Walks and Electric Resistance Networks	85		
	6.1	Electric Resistance Network and its Probabilistic Interpretation	85		
	6.2	Dissipation and Effective Resistance			
		in Electric Resistance Networks	87		
	6.3	Effective Resistance is Bounded Above			
		by the Shortest Path Distance	89		
	6.4	Kirchhoff and Wiener Indexes of a Graph	90		
	6.5	Relation Between Effective Resistances			
		and Commute Times	90		
	6.6	Summary	9		

Contents xi

7	Ran	dom Wal	lks and Diffusions on Directed Graphs	
	and		ing Networks	93
	7.1	Rando	m Walks on Directed Graphs	93
		7.1.1	A Time Forward Random Walk	94
		7.1.2	Backward Time Random Walks	94
		7.1.3	Stationary Distributions of Random Walks	
			on Directed Graphs	95
	7.2	Laplac	e Operator Defined on Aperiodic Strongly	
		Connec	cted Directed Graphs	96
		7.2.1	Bi-orthogonal Decomposition of Random	
			Walks Defined on Strongly Connected	
			Directed Graphs	98
	7.3	Spectra	al Analysis of Self-adjoint Operators Defined	
		on Dire	ected Graphs	101
	7.4	Self-ad	ljoint Operators Defined on Interacting Networks	103
	7.5	Summa	ary	105
8	Stru	ctural A	nalysis of Networks and Databases	107
	8.1	Structu	are and Function in Complex Networks and Databases	108
	8.2	Graph	Cut Problems	109
		8.2.1	Weakly Connected Graph Components	110
		8.2.2	Graph Partitioning Objectives as Trace	
			Optimization Problems	112
	8.3	Marko	v Chains Estimate Land Value in Cities	116
		8.3.1	Spatial Networks of Urban Environments	117
		8.3.2	Spectra of Cities	118
		8.3.3	First-passage Times to Ghettos	120
		8.3.4	Random Walks Estimate Land Value in Manhattan	121
	8.4	•		123
		8.4.1	Applying Phylogenetic Methods to Language	
			Taxonomies	124
		8.4.2	The Data Set We Have Used	125
		8.4.3	The Relations Among Languages Encoded	
			in the Matrix of Lexical Distances	126
		8.4.4	The Structural Component Analysis on Language Data	128
		8.4.5	Principal Structural Components	
			of the Lexical Distance Data	131
		8.4.6	Geometric Representation	
			of the Indo-European Family	132
		8.4.7	In Search of Lost Time	135
		8.4.8	Evidence for Proto-Indo-Europeans	137
		8.4.9	In Search of Polynesian Origins	140
		8.4.10	Geometric Representation of Malagasy Dialects	144
		8.4.11	Austronesian Languages Riding an Express Train	148

xii Contents

	8.5	Markov	Chain Analysis of Musical Dice Games	152	
		8.5.1	Musical Dice Game as a Markov Chain	153	
		8.5.2	Encoding of a Discrete Model of Music		
			(MIDI) into a Transition Matrix	156	
		8.5.3	Musical Dice Game as a Generalized		
			Communication Process	160	
		8.5.4	First Passage Times to Notes Resolve Tonality		
			of Musical Dice Games	164	
		8.5.5	First Passage Times to Notes Feature a Composer	167	
	8.6	Summa	ry	170	
)	When	. Feedba	acks Matter: Epidemics, Synchronization,		
•			lation in Complex Networks	171	
	9.1		tible-Infected-Susceptible Models in Epidemics	172	
	9.1	9.1.1	Dynamical Equation of the Epidemic	1/2	
		9.1.1	Spreading in Scale Free Networks	172	
		9.1.2	Simplified Equation for Low Infection Rates	174	
		9.1.2	Stationary Solution of the Epidemic Equation	1/4	
		9.1.3	for Low Infection Rates	175	
		0.1.4	Dynamical Solution of the Evolution Equation	173	
		9.1.4	•	170	
	0.2	P.21	for Low Infection Rates	178 180	
	9.2				
	9.3	•			
			lomly Coupled Map Networks	183	
		9.3.1	The Model of Random Networks of Coupled Maps	185	
		9.3.2	Spatiotemporal Intermittency and Collective Behavior	186	
		9.3.3	The Evolution of $\mathbb{G}(N,k)$ with k	193	
	9.4		odynamics of Random Networks of Coupled	106	
		•		196	
	9.5	_	Gene Expression Regulatory Networks	202	
		9.5.1	A Model of a Large Gene Expression	• • •	
			Regulatory Networks	203	
		9.5.2	Numerical Analysis of Large Gene Expression		
			Regulatory Networks	206	
	9.6		Field Approach to the Large Transcription		
		_	tory Networks		
	9.7	Summa	ıry	217	
10	Critic	cal Phen	omena on Large Graphs with Regular		
				219	
	10.1		otion of the Model and the Results		
	10.2	The Regular Subgraphs Viewed as Riemann Surfaces			
	10.3		ear Diffusions Through Complex Networks	224	

Contents		xiii
10.5	Diffusion as a Generalized Brownian Motion	233
Reference	s	237
Glossary	of Graph Theory	258
Index		259