Contents

Lis	t of F	igures	iχ
Lis	t of T	ables	xxiii
Fo	rewor	d	xxv
Ac	know	ledgments	xxix
Int	roduc	tion	xxxi
1.	KIN	ETIC THEORY OF DILUTE GASES	1
	1	Introduction	1
	2	Derivation of the Boltzmann equation	3
	3	General properties of the Boltzmann equation. H -theorem	12
	4	Chapman–Enskog expansion	18
	5	Boltzmann equation for gas mixtures	29
	6	Kinetic models for a single gas	33
	7	Kinetic models for gas mixtures	40
2.	SOL	UTION OF THE BOLTZMANN EQUATION FOR UNIFORM	
		AR FLOW	55
	1	Introduction	55
	2	The Boltzmann equation for uniform shear flow	57
	3	Moment equations for a gas of Maxwell molecules. Rheological	
		properties	61
	4	Third- and fourth-degree velocity moments	71
	5	Singular behavior of the velocity moments	79
	6	Perturbation expansion of the distribution function	86
	7	Nonequilibrium entropy	89

3.	KIN	ETIC MODEL FOR UNIFORM SHEAR FLOW	95
	1	Introduction	95
	2	The BGK equation for uniform shear flow. Maxwell molecules	96
	3	Power-law repulsive potentials. Hard spheres	107
		3.1 Velocity distribution function	107
		3.2 Rheological properties	110
	4	The thermostatted state	117
	5	Nonequilibrium entropy of the thermostatted state	126
	6	Small perturbations from the thermostatted state	133
	7	Heat transport under uniform shear flow	139
		7.1 Boltzmann description for Maxwell molecules	140
		7.2 BGK description for general interactions	144
		7.3 Heat flux induced by an external force	148
	8	Stability of the uniform shear flow	149
		8.1 Theoretical analysis	149
		8.2 Monte Carlo simulations	153
4.	UNI	FORM SHEAR FLOW IN A MIXTURE	165
	1	Introduction	165
	2	Maxwell molecules	166
		2.1 Transient regime	168
		2.2 Rheological properties	174
	3	General repulsive interactions	178
		3.1 Rheological properties	180
		3.2 Velocity distribution functions	188
	4	Nonequilibrium phase transition in the tracer limit	193
	5	Generalized diffusion and Dufour coefficients	202
		5.1 Diffusion tensor	206
		5.2 Dufour tensor	209
5.	PLA	NAR COUETTE FLOW IN A SINGLE GAS	213
	1	Introduction	213
	2	Hydrodynamic description	215
	3	The Boltzmann equation for the planar Couette flow	222
	4	BGK kinetic model description	231
		4.1 Generalized transport coefficients	232
		4.2 Velocity distribution function	242
	5	Nonequilibrium entropy of the Couette flow	246

Contents		vii
6	Other kinetic theories	248
7	Comparison with computer simulations	254
6. PL	ANAR COUETTE FLOW IN A MIXTURE	271
1	Introduction	271
2	Kinetic model description for a mixture	272
3	Application to the case of a binary mixture	280
4	Diffusion and mobility in the tracer limit.	289
Appendices		298
List of symbols		299
Refere	ences	305
Index		315