Contents

	Preface		<i>page</i> xi
	Acknowl	edgment	xiii
1	Introdu	ction	1
2	Charact	terization of the SOC State	7
2.1	Respons	e Distributions	7
2.2	Tempora	al Fluctuations	8
2.3	Power S	9	
2.4	Spatial (Correlation Functions	10
3	Systems	s Exhibiting SOC	12
3.1	Introduc		12
3.2	Sandpile	es	14
3.3	Ricepiles		16
3.4	•		18
3.5	Droplet	Formation	23
3.6	•		25
3.7	Evolution	27	
4	Compu	iter Models	29
4.1	Introdu	ction	29
4.2	Sandpil	es: Conservative Model	29
	4.2.1	One-Dimensional Sandpile	30
	4.2.2	Dimensions Larger than 1	33
	4.2.3	Critical Response	36
	4.2.4	Numerical Results: Distribution Functions	37
	4.2.5	Power Spectrum	39
4.3	Earthquake Models: Nonconservative Models		42
	4.3.1	Criticality of the OFC Model	44
	4.3.2	Nearest Neighbor OFC Model	44
	4.3.3	Random Neighbor OFC Model	46

viii		Contents	
	4.3.4	Distributions and Fluctuations in the Nearest Neighbor OFC Model	47
	4.3.5		51
	4.3.6	ss j - testact out the of e intoact	54
4.4	Lattic	the Gas	58
	4.4.1	Definition of the Lattice Gas Model	58
	4.4.2	Properties of Lattice Gas	60
	4.4.3	The Lesson of Lattice Gas	62
	4.4.4	Physical Relevance of the Lattice Gas Model	64
4.5	Forest Fires		
	4.5.1	Definition of a Critical Forest Fire Model	66
	4.5.2	Simulation Results for the Forest Fire Model	67
	4.5.3	J	68
4.6		num Dynamics	68
	4.6.1	J was just at a stantaon in culture	69
	4.6.2	The Evolution Model	73
5	The S	earch for a Formalism	76
5.1	Introd	uction	76
5.2		Field Theory	77
	5.2.1	Sandpile Models	78
		Earthquake Models	81
		Diffusive Description of Lattice Gas	85
		Forest Fire Model	86
		Model of Biological Evolution	89
5.3		Solution of the Abelian Sandpile	92
	5.3.1	= 12 and the Probability Measure on the	
	5 2 0	Configuration Space	93
<i>-</i> 1	5.3.2	Correlation Functions	97
5.4	_	vin Equations	100
		Conservative Models	100
<i>5 5</i>	5.4.2 D	Nonconservative Models	103
5.5		nically Driven Renormalization Group Calculations	107
	5.5.1	Renormalization Transformation	108
	5.5.2 5.5.3	Exponents Nonconsequenting Madala	116
	5.5.4	Nonconservative Models Forest Fire Models	119
	J.J.4	Forest Fire Models	124
6	Is It So	OC or Not?	125
6.1	Where	Is SOC to be Found?	126
6.2	What I	s Tuning?	127

	Contents	ix
Ap	pendices	
Α	Code for the BTW Sandpile	131
В	Code for the Lattice Gas	134
C	Code for the Bak-Sneppen Evolution Model	138
D	Power Spectra and the Correlation Function	141
E	Statistical Weights in the DDRG	146
	References	149
	Index	153