Contents

·			page x1	
A	ckno	wledge	ements	XV
1	Int	roduct	ion	1
	1.1	Why?		1
	1.2	The p	urpose of this book	4
			ership and background literature	6
	1.4	Conte	ents and structure of this book	7
	1.5	On us	ing this book	15
2	Cor	nceptu	al foundations	18
	2.1	Introd	luction	18
	2.2	Dress	ed test particle model of fluctuations in a plasma near	
		equilibrium		20
		2.2.1	Basic ideas	20
		2.2.2	Fluctuation spectrum	24
		2.2.3	Relaxation near equilibrium and the Balescu-Lenard	
			equation	35
		2.2.4	Test particle model: looking back and looking ahead	48
	2.3	Turbu	lence: dimensional analysis and beyond – revisiting the	
		theory	of hydrodynamic turbulence	51
		2.3.1	Key elements in Kolmogorov theory of cascade	51
		2.3.2	Two-dimensional fluid turbulence	57
		2.3.3	Turbulence in pipe and channel flows	65
		2.3.4	Parallels between K41 and Prandtl's theory	71
3	Quasi-linear theory			
	3.1	The w	hy and what of quasi-linear theory	72
	3.2 Foundations, applicability and limitations of quasi-linear theory 7			

vi Contents

		3.2.1	Irreversibility	77	
		3.2.2	Linear response	79	
		3.2.3	Characteristic time-scales in resonance processes	80	
			Two-point and two-time correlations	82	
		3.2.5	Note on entropy production	85	
	3.3	Energ	gy and momentum balance in quasi-linear theory	86	
		3.3.1	Various energy densities	86	
		3.3.2	Conservation laws	88	
		3.3.3	Roles of quasi-particles and particles	90	
	3.4	Applications of quasi-linear theory to bump-on-tail			
		instability			
		3.4.1	Bump-on-tail instability	92	
		3.4.2	Zeldovich theorem	93	
		3.4.3	Stationary states	95	
		3.4.4	Selection of stationary state	95	
	3.5		cation of quasi-linear theory to drift waves	99	
			Geometry and drift waves	99	
		3.5.2	Quasi-linear equations for drift wave turbulence	102	
			Saturation via a quasi-linear mechanism	104	
	3.6	Appli	cation of quasi-linear theory to ion mixing mode	105	
	3.7	Nonli	near Landau damping	108	
	3.8	Kubo	number and trapping	111	
4					
	4.1 Prologue and overview				
	4.2	Resor	nance broadening theory	117	
		4.2.1	Approach via resonance broadening theory	117	
		4.2.2	Application to various decorrelation processes	124	
		4.2.3	Influence of resonance broadening on mean evolution	128	
	4.3	Renor	malization in Vlasov turbulence I: Vlasov response		
		functi	on	130	
		4.3.1	Issues in renormalization in Vlasov turbulence	130	
			One-dimensional electron plasmas	131	
	4.4	Renor	malization in Vlasov turbulence II: drift wave turbulence	135	
		4.4.1	Kinetic description of drift wave fluctuations	135	
		4.4.2	Coherent nonlinear effect via resonance broadening		
			theory	136	
		4.4.3	Conservation revisited	137	
		4.4.4	Conservative formulations	139	
		4.4.5	Physics content and predictions	142	

Contents	3711
Comenis	VII

5	Kin	etics o	f nonlinear wave-wave interaction	150	
	5.1	Introd	luction and overview	150	
		5.1.1	Central issues and scope	150	
		5.1.2	Hierarchical progression in discussion	151	
	5.2	The in	ntegrable dynamics of three coupled modes	154	
		5.2.1	Free asymmetric top (FAT)	154	
		5.2.2	Geometrical construction of three coupled modes	155	
		5.2.3	Manley–Rowe relation	158	
		5.2.4	Decay instability	161	
		5.2.5	Example – drift–Rossby waves	162	
		5.2.6	Example – unstable modes in a family of drift waves	165	
	5.3	The p	hysical kinetics of wave turbulence	166	
		5.3.1	Key concepts	166	
		5.3.2	Structure of a wave kinetic equation	169	
			'Collision' integral	173	
		5.3.4	Application to drift–Rossby wave	180	
		5.3.5	Issues to be considered	185	
	5.4	The se	caling theory of local wave cascades	186	
		5.4.1	Basic ideas	186	
		5.4.2	Gravity waves	191	
	5.5		ocal interaction in wave turbulence	195	
		5.5.1	Elements in disparate scale interaction	195	
			Effects of large/meso scale modes on micro fluctuations	198	
		5.5.3	Induced diffusion equation for internal waves	199	
		5.5.4	Parametric interactions revisited	203	
6	Clo	sure tl	neory	208	
	6.1 Concepts in closure				
			Issues in closure theory	208 210	
			Illustration: the random oscillator	212	
			Illustration by use of the driven-Burgers/KPZ equation (1)	216	
			Illustration by use of the driven-Burgers/KPZ equation (2)	225	
			Short summary of elements in closure theory	230	
		6.1.6	On realizability	231	
	6.2		Zwanzig theory and adiabatic elimination	233	
		6.2.1	Sketch of projection and generalized Langevin equation	234	
		6.2.2	Memory function and most probable path	237	
	6.3		evin equation formalism and Markovian approximation	244	
		6.3.1	Langevin equation approximation	244	
			Markovian approximation	246	

viii Contents

	6.4	Closu	re model for drift waves	24.
		6.4.1	Hasegawa–Mima equation	247
		6.4.2	Application of closure modelling	248
		6.4.3	On triad interaction time	253
		6.4.4	Spectrum	255
		6.4.5	Example of dynamical evolution – access to statistical	
			equilibrium and H-theorem	256
	6.5	Closu	re of kinetic equation	260
	6.6	Short	note on prospects for closure theory	263
7	Dis	parate	scale interactions	260
	7.1	Short	overview	260
	7.2	Langr	nuir waves and self-focusing	269
		7.2.1	Zakharov equations	269
		7.2.2	Subsonic and supersonic limits	273
		7.2.3	Subsonic limit	274
		7.2.4	Illustration of self-focusing	274
		7.2.5	Linear theory of self-focusing	276
	7.3	Langr	muir wave turbulence	27
		7.3.1	Action density	278
		7.3.2	Disparate scale interaction between Langmuir turbulence	
			and acoustic turbulence	278
			Evolution of the Langmuir wave action density	283
			Response of distribution of quasi-particles	283
			Growth rate of modulation of plasma waves	280
			Trapping of quasi-particles	28'
		7.3.7	Saturation of modulational instability	289
	7.4	-	pse of Langmuir turbulence	29
		7.4.1	Problem definition	29
			Adiabatic Zakharov equation	293
			Collapse of plasma waves with spherical symmetry	293
		7.4.4	Note on 'cascade versus collapse'	29′
8	Cas	scades,	structures and transport in phase space turbulence	299
	8.1	Motiv	ration: basic concepts of phase space turbulence	299
		8.1.1	Issues in phase space turbulence	299
		8.1.2	Granulation – what and why	30:
	8.2	Statis	tical theory of phase space turbulence	314
		8.2.1	Structure of the theory	314
		8.2.2	Physics of production and relaxation	313

Contents	2

		8.2.3	Physics of relative dispersion in Vlasov turbulence	329
	8.3		es of relaxation and turbulent states with granulation	340
			space structures – a look ahead	347
Q	MH	(D tur)	bulence	348
			uction to MHD turbulence	348
			ds a scaling theory of incompressible MHD turbulence	350
	,		Basic elements: waves and eddies in MHD turbulence	350
			Cross-helicity and Alfvén wave interaction	351
			Heuristic discussion of Alfvén waves and cross-helicity	353
			MHD turbulence spectrum (I)	355
			MHD turbulence spectrum (II)	357
			An overview of the MHD turbulence spectrum	359
	9.3	Nonli	near Alfvén waves: compressibility, steepening	
			sparate-scale interaction	362
		9.3.1	Effect of small but finite compressibility	362
			A short note, for perspective	366
	9.4		lent diffusion of magnetic fields: a first step in mean	
			electrodynamics	366
		9.4.1	A short overview of issues	366
		9.4.2	Flux diffusion in a two-dimensional system: model	
			and concepts	367
		9.4.3	Mean field electrodynamics for $\langle A \rangle$ in a two-dimensional	
			system	370
		9.4.4	Turbulent diffusion of flux and field in a three-dimensional	
			system	380
		9.4.5	Discussion and conclusion for turbulent diffusion	
			of a magnetic field	384
A	рреп	dix 1	Charney-Hasegawa-Mima equation	385
		dix 2	Nomenclature	398
	efere			407
Index				415