Contents

Pı	efac	e	v
1	Intr	oduction	1
2	Schrödinger Equation, its Separation and its Exact Eigenfunctions		15
	2.1	Separation of the time-independent Schrödinger equation for the internal motion	18
	2.2	Properties of the eigenfunctions of the time-independent Schrödinger equation for the internal motion	22
3		velopment in Time of the Probability aplitude for a Decaying State	27
4	Pha	ase-Integral Method	30
	4.1	Phase-integral approximation generated from an unspecified base function	31
	4.2		38
		4.2.1 Connection formulas pertaining to a first-order transition zero on the real axis	38
		4.2.2 Connection formula pertaining to a first-order transition pole at the origin	40

	4.3	Connection formula for a real, smooth, single-hump	46
		potential barrier	4:
		4.3.1 Wave function given as a standing wave	4
	4.4	4.3.2 Supplementary quantity ϕ	46
	4.4	Quantization conditions for single-well potentials	49
5		rivation of Phase-Integral Formulas for offiles, Energies and Half-Widths of	
		rk Levels	52
	5.1	Positions of the Stark levels	64
	5.1	Formulas for the calculation of dL/dE , dK_{2n}/dE	U-
	0.2	and dK/dE	66
	5.3	Half-widths of the Stark levels	67
	0.0	Trail Widelie of the Stark levels	
6		cedure for Transformation of the	
		ase-Integral Formulas into Formulas Involving mplete Elliptic Integrals	69
A	djoin	ed Papers by Anders Hökback and	
		ed Papers by Anders Hökback and of Fröman	75
Pe	er Ol	of Fröman	75
	er Ol Pha	of Fröman ase-Inegral Quantities and Their Partial	75
Pe	er Ol Pha Der	of Fröman ase-Inegral Quantities and Their Partial vivatives with Respect to E and Z_1 Expressed	75 77
Pe	Pha Der in T	of Fröman ase-Inegral Quantities and Their Partial vivatives with Respect to E and Z_1 Expressed ferms of Complete Elliptic Integrals	77
Pe	Pha Der in T	of Fröman ase-Inegral Quantities and Their Partial vivatives with Respect to E and Z_1 Expressed Terms of Complete Elliptic Integrals The ξ -equation	77
Pe	Pha Der in 7 7.1 7.2	of Fröman ase-Inegral Quantities and Their Partial vivatives with Respect to E and Z_1 Expressed Terms of Complete Elliptic Integrals The ξ -equation The η -equation in the sub-barrier case	77 78 82
Pe	Pha Der in T	of Fröman ase-Inegral Quantities and Their Partial vivatives with Respect to E and Z_1 Expressed Terms of Complete Elliptic Integrals The ξ -equation The η -equation in the sub-barrier case	77
Pe	Pha Der in 7 7.1 7.2 7.3	of Fröman ase-Inegral Quantities and Their Partial vivatives with Respect to E and Z_1 Expressed Terms of Complete Elliptic Integrals The ξ -equation The η -equation in the sub-barrier case	77 78 82
P€ 7	Pha Der in 7 7.1 7.2 7.3 Nur	ase-Inegral Quantities and Their Partial vivatives with Respect to E and Z_1 Expressed Ferms of Complete Elliptic Integrals The ξ -equation The η -equation in the sub-barrier case The η -equation in the super-barrier case	77 78 82 83
P€ 7 8 R€	Pha Der in 7 7.1 7.2 7.3 Nur	ase-Inegral Quantities and Their Partial vivatives with Respect to E and Z_1 Expressed Terms of Complete Elliptic Integrals The ξ -equation The η -equation in the sub-barrier case The η -equation in the super-barrier case merical Results	77 78 82 83 89
Pe 7 8 Re	Pha Der in 7 7.1 7.2 7.3 Num	ase-Inegral Quantities and Their Partial vivatives with Respect to E and Z_1 Expressed Terms of Complete Elliptic Integrals The ξ -equation The η -equation in the sub-barrier case The η -equation in the super-barrier case merical Results	77 78 83 83 89