Contents

L	Basic Concepts of Thermodynamics			
	and	Statistical Physics	1	
	1.1	Macroscopic Description of State of Systems:		
		Postulates of Thermodynamics	1	
	1.2	Mechanical Description of Systems: Microscopic State:		
		Phase Space: Quantum States	6	
	1.3	Statistical Description of Classical Systems:		
		Distribution Function: Liouville Theorem	13	
	1.4	Microcanonical Distribution:		
		Basic Postulate of Statistical Physics	19	
	1.5	Statistical Description of Quantum Systems:		
		Statistical Matrix: Liouville Equation	2°	
	1.6	Entropy and Statistical Weight		
	1.7	Law of Increasing Entropy:		
		Reversible and Irreversible Processes	31	
	1.8	Absolute Temperature and Pressure:		
		Basic Thermodynamic Relationship	35	
2	Law	of Thermodynamics: Thermodynamic Functions	43	
	2.1	First Law of Thermodynamics:		
		Work and Amount of Heat: Heat Capacity	43	
	2.2	Second Law of Thermodynamics: Carnot Cycle	50	
	2.3	Thermodynamic Functions of Closed Systems:		
		Method of Thermodynamic Potentials	56	
	2.4	Thermodynamic Coefficients		
		and General Relationships Between Them	63	
	2.5	Thermodynamic Inequalities:		
		Stability of Equilibrium State of Homogeneous Systems	69	
	2.6	Third Law of Thermodynamics: Nernst Principle	74	
	2.7	Thermodynamic Relationships for Dielectrics and Magnetics \ldots	79	

	2.8	Magnetocaloric Effect:
		Production of Ultra-Low Temperatures
	2.9	Thermodynamics of Systems with Variable Number
		of Particles: Chemical Potential
	2.10	Conditions of Equilibrium of Open Systems
3	Can	onical Distribution: Gibbs Method 93
	3.1	Gibbs Canonical Distribution for Closed Systems 93
	3.2	Free Energy: Statistical Sum and Statistical Integral 99
	3.3	Gibbs Method and Basic Objects of its Application 102
	3.4	Grand Canonical Distribution for Open Systems103
4	Idea	d Gas
	4.1	Free Energy, Entropy and Equation
		of the State of an Ideal Gas
	4.2	Mixture of Ideal Gases: Gibbs Paradox
	4.3	Law About Equal Distribution of Energy Over Degrees
		of Freedom: Classical Theory of Heat Capacity
		of an Ideal Gas
		4.3.1 Classical Theory of Heat Capacity of an Ideal Gas 118
	4.4	Quantum Theory of Heat Capacity of an Ideal Gas:
		Quantization of Rotational and Vibrational Motions
		4.4.1 Translational Motion
		4.4.2 Rotational Motion
		4.4.3 Vibrational Motion
	4 -	4.4.4 Total Heat Capacity
	4.5	Ideal Gas Consisting of Polar Molecules
		in an External Electric Field
		10
		4.5.3 Mean Value of Energy: Caloric Equation of State 138 4.5.4 Heat Capacity: Determination
		of Electric Dipole Moment of Molecule
	4.6	Paramagnetic Ideal Gas in External Magnetic Field
	4.0	4.6.1 Classical Case
		4.6.2 Quantum Case
	4.7	Systems with Negative Absolute Temperature
	1.1	bysicins with regative Absolute Temperature130
5	Non	-Ideals Gases
	5.1	Equation of State of Rarefied Real Gases
	5.2	Second Virial Coefficient and Thermodynamics
		of Van Der Waals Gas
	5.3	Neutral Gas Consisting of Charged Particles: Plasma 169

Ó	Solids			
	6.1	Vibration and Waves in a Simple Crystalline Lattice	. 17	
		6.1.1 One-Dimensional Simple Lattice	. 178	
		6.1.2 Three-Dimensional Simple Crystalline Lattice	. 182	
	6.2	Hamilton Function of Vibrating Crystalline Lattice:		
		Normal Coordinates	. 184	
	6.3	Classical Theory of Thermodynamic Properties of Solids		
	6.4	Quantum Theory of Heat Capacity of Solids:		
		Einstein and Debye Models	. 194	
		6.4.1 Einstein's Theory		
		6.4.2 Debye's Theory		
	6.5	Quantum Theory of Thermodynamic Properties of Solids		
7	Qua	antum Statistics: Equilibrium Electron Gas		
	7.1	Boltzmann Distribution: Difficulties of Classical Statistics	. 214	
	7.2	Principle of Indistinguishability of Particles:		
		Fermions and Bosons	. 222	
	7.3	Distribution Functions of Quantum Statistics	. 229	
	7.4	Equations of States of Fermi and Bose Gases	. 234	
	7.5	Thermodynamic Properties of Weakly Degenerate		
		Fermi and Bose Gases	. 237	
	7.6	Completely Degenerate Fermi Gas: Electron Gas:		
		Temperature of Degeneracy	. 240	
	7.7	Thermodynamic Properties		
		of Strongly Degenerate Fermi Gas: Electron Gas	. 24	
	7.8	General Case: Criteria of Classicity		
		and Degeneracy of Fermi Gas: Electron Gas	. 249	
		7.8.1 Low Temperatures	. 250	
		7.8.2 High Temperatures	. 25	
		7.8.3 Moderate Temperatures: $T \approx T_0$. 25	
	7.9	Heat Capacity of Metals:		
		First Difficulty of Classical Statistics	25^{2}	
		7.9.1 Low Temperatures		
		7.9.2 Region of Temperatures	. 256	
	7.10	Pauli Paramagnetism: Second Difficulty of Classical Statistics	. 258	
	7.11	"Ultra-Relativistic" Electron Gas in Semiconductors	. 262	
	7.12	Statistics of Charge Carriers in Semiconductors	. 265	
		Degenerate Bose Gas: Bose–Einstein Condensation		
		Photon Gas: Third Difficulty of Classical Statistics		
		Phonon Gas		
8	Elec	ctron Gas in Quantizing Magnetic Field	. 29'	
	8.1	Motion of Electron in External Uniform Magnetic Field:		
		Quantization of Energy Spectrum		
	8.2	Density of Quantum States in Strong Magnetic Field		

	8.3	Grand Thermodynamic Potential and Statistics				
		of Electron Gas in Quantizing Magnetic Field				
	8.4	Thermodynamic Properties of Electron Gas				
		in Quantizing Magnetic Field				
	8.5	Landau Diamagnetism				
9	Nor	n-Equilibrium Electron Gas in Solids				
	9.1	Boltzmann Equation and Its Applicability Conditions				
		9.1.1 Nonequilibrium Distribution Function				
		9.1.2 Boltzmann Equation				
		9.1.3 Applicability Conditions of the Boltzmann Equation 325				
	9.2	Solution of Boltzmann Equation in Relaxation				
		Time Approximation				
		9.2.1 Relaxation Time				
		9.2.2 Solution of the Boltzmann Equation in the Absence				
		of Magnetic Field				
		9.2.3 Solution of Boltzmann Equation with an Arbitrary				
		Nonquantizing Magnetic Field				
	9.3	General Expressions of Main Kinetic Coefficients				
	0.0	9.3.1 Current Density and General Form				
		of Conductivity Tensors				
		9.3.2 General Expressions of Main Kinetic Coefficients 342				
	9.4	Main Relaxation Mechanisms				
	0.1	9.4.1 Charge Carrier Scattering by Ionized Impurity Atoms 345				
		9.4.2 Charge Carrier Scattering by Phonons in Conductors				
		with Arbitrary Isotropic Band				
		9.4.3 Generalized Formula for Relaxation Time				
	9.5	Boltzmann Equation Solution for Anisotropic Band				
	0.0	in Relaxation Time Tensor Approximation				
		9.5.1 Current Density				
		9.5.2 The Boltzmann Equation Solution				
		9.5.3 Current Density				
		5.5.5 Current Density				
Def	inite	Integrals Frequently Met in Statistical Physics				
		Gamma-Function or Euler Integral of Second Kind 363				
		Integral of Type				
		Integral of Type				
		Integral of Type				
		Integral of Type				
Jac	obiai	n and Its Properties				
Bib	Bibliograpy					
Index						