CONTENTS

PREFACE	vii
ACKNOWLEDGMENTS	ix
I. PHILOSOPHY OF SCIENCE	1
Introduction	1
Philosophy of Science	3
Truth	4
Significant Questions in Science	7
II. CLASSICAL PRECURSORS FOR THE CONCEPT	'S
OF MODERN PHYSICS	9
Galileo Galilei	9
The Thought Experiment	9
Galileo's Principle of Inertia	9
Laws of Motion in Two- and Three-Dimensi	onal
Space	11
Galileo's Principle of Relativity	11
Threads of Truth — Astronomy	12
Rene Descartes	13
Baruch Spinoza	14

	Isaac Newton	15
	Newton's Three Laws of Motion	16
	Newton's Law of Universal Gravitation	16
	Newton's Concepts	18
	Newton's Optics	19
III.	NINETEENTH CENTURY PHYSICS: ATOMISM	2.1
	AND CONTINUITY	21
	The Ideal Gas Law	22
	Heat and the Conservation of Energy	24
	The Laws of Thermodynamics and Atomism	25
	Ludwig Boltzmann's and Ernst Mach's Philosophy	
	of Science	27
	Agreements between Boltzmann and Mach and	
	'Mach's Principle'	28
	The Continuous Field Concept	29
13.7	EARLY ANOMALIES AND ELEMENTARY PARTICLES	34
10.	The Perihelion Precession of Mercury's Orbit	34
	The Michelson-Morley Experiment	35
	Blackbody Radiation and the Photon	37
	The Electron	39
	The Quantization of Electrical Charge	40
	The Photoelectric Effect	41
	The Compton Effect	41
	Radioactivity	42
	Rutherford and Atomic Structure	43
	Bohr's Atomic Model	43
V	. FROM THE OLD QUANTUM THEORY TO	4.4
	QUANTUM MECHANICS	40
	Bohr's Atom and Energy Levels	40
	Electron Diffraction and Wave-Particle Dualism	48
	Schrödinger's Wave Mechanics	49
	Schrödinger's Interpretation of Wave Mechanics	50

	Contents	xiii
	The Young Double Slit Experiment	52
	Einstein's Objection to Born's Interpretation of	
	Linear Superposition	54
	Schrödinger's Cat Paradox	55
VI.		
	MECHANICS AND THE COPENHAGEN SCHOOL	57
	Heisenberg's Philosophy	57
	Matrix Mechanics	58
	The Heisenberg Uncertainty Principle	60
	The Subjectivity of Matter in the Copenhagen View	61
	The Principle of Complementarity	62
	Einstein's Photon Box Thought Experiment	63
	The Einstein-Podolsky-Rosen Thought Experiment	64
	Hidden Variables	66
VII.	CONCEPTS OF THE THEORY OF RELATIVITY	68
	The Principle of Relativity	68
	Einstein's Discovery of the Theory of Relativity	70
	The Spacetime Metric in Special Relativity	72
	The Light Cone	73
	Lorentz Transformations	73
	Relative Simultaneity	74
	Time Contraction and the Twin Paradox	75
	The Fitzgerald-Lorentz Contraction	77
	The Transformations of Velocities in Relativity	
	Theory	77
VIII.	FROM SPECIAL TO GENERAL RELATIVITY	79
	The Paradoxes of Time Travel	79
	The Energy–Mass Relation $E = mc^2$ in Special	
	Relativity	81
	The Meaning of $E = mc^2$	84
	The Theory of General Relativity	84
	The Metric of a Curved Spacetime	85

Concepts of Modern	Physics:	The	Haifa	Lectures
--------------------	----------	-----	-------	----------

xiv	Concepts of Modern Physics: The Haifa Lectures	
	The Principle of Equivalence	86
	The Tests of General Relativity	88
	A Unified Field Theory	90
IX.	THE UNIVERSE	93
	Astrophysics	93
	Black Holes	93
	Pulsars	95
	Dark Matter	96
	Cosmology: The Physics of the Universe	97
	The Early Friedman Model	100
	The Hubble Law	101
	The Beginning of the Universe	101
	Olbers' Paradox	101
	A Spiral Universe	103
	The Separation of Matter and Antimatter in	
	the Universe	104
X.	CONFLICTS IN THE FOUNDATIONS OF THE	106
	QUANTUM AND RELATIVITY THEORIES	106
	The Principle of Complementarity versus the	
	Principle of Relativity	107
	Atomism Versus Continuity	108
	On Epistemology — Logical Positivism Versus	
	Abstract Realism	109
	Subjectivity Versus Objectivity	110
	On Quantum Electrodynamics	113
	Indeterminism Versus Determinism	114
REI	FERENCES AND NOTES	116
INI	DEX	123