CONTENTS

		page
	Foreword by John Miles	xiii
	Preface	xix
	1 INTRODUCTION	
1	Introduction	1
2	Mechanisms of instability	4
3	Fundamental concepts of hydrodynamic stability	8
4	Kelvin–Helmholtz instability	14
5	Break-up of a liquid jet in air	22
Pro	blems for chapter 1	27
	-	
	2 THERMAL INSTABILITY	
6	Introduction	32
7	The equations of motion	34
	The exact equations, 34; The Boussinesq equations,	
	35	
8	The stability problem	37
	The linearized equations, 37; The boundary condi-	
	tions, 40; Normal modes, 42	
9	General stability characteristics	44
	Exchange of stabilities, 44; A variational principle,	
	45	
10	Particular stability characteristics	50
	Free-free boundaries, 50; Rigid-rigid boundaries,	
	51; free-rigid boundaries, 52	
11	The cells	52
12	Experimental results	59
13	Some applications	62
Problems for chapter 2		63

3 CENTRIFUGAL INSTABILITY

14	Introduction	69	
15	Instability of an inviscid fluid	71	
	Three-dimensional disturbances, 73; Axisymmetric		
	disturbances, 77; Two-dimensional disturbances, 80		
16	Instability of Couette flow of an inviscid fluid	82	
17	The Taylor problem	88	
	Axisymmetric disturbances, 90; Two-dimensional		
	disturbances, 103; Three-dimensional disturbances,		
	104; Some experimental results, 104		
18	The Dean problem	108	
	The Dean problem, 108; The Taylor-Dean prob-		
10	Iem, 113	116	
19	The Gortier problem	121	
Pro	blems for chapter 3	121	
	4 PARALLEL SHEAR FLOWS		
20	Introduction	124	
The inviscid theory			
21	The governing equations	126	
22	General criteria for instability	131	
23	Flows with piecewise-linear velocity profiles	144	
	Unbounded vortex sheet, 145; Unbounded shear		
	layer, 146; Bounded shear layer, 147		
24	The initial-value problem	147	
	The viscous theory		
	The viscous theory		
25	The governing equations	153	
26	The eigenvalue spectrum for small Reynolds numbers	158	
	A perturbation expansion, 159; Sufficient conditions		
	for stability, 161		
27	Heuristic methods of approximation	164	
	The reduced equation and the inviscid approxima-		
	tions, 165; The boundary-layer approximation near		
	a rigid wall, 167; The WKBJ approximations,		
	167; The local turning-point approximations,		

28	171; The truncated equation and Tollmien's improved viscous approximations, 175; The viscous correction to the singular inviscid solution, 177 Approximations to the eigenvalue relation Symmetrical flows in a channel, 181; Flows of the boundary-layer type, 183; The boundary-layer approximation to $\phi_3(z)$, 184; The WKBJ approxi- mation to $\phi_3(z)$, 185; The local turning-point approximation to $\phi_3(z)$, 188; Tollmien's improved approximation to $\phi_3(z)$, 191	180
29	The long-wave approximation for unbounded flows	196
30	Numerical methods of solution	202
	Expansions in orthogonal functions, 203; Finite- difference methods, 206; Initial-value methods (shooting), 207	
31	 Stability characteristics of various basic flows Plane Couette flow, 212; Poiseuille flow in a circular pipe, 216; Plane Poiseuille flow, 221; Combined plane Couette and plane Poiseuille flow, 223; The Blasius boundary-layer profile, 224; The asymptotic suction boundary-layer profile, 227; Boundary layers at separation, 229; The Falkner-Skan profiles, 231; The Bickley jet, 233; The hyperbolic-tangent shear layer, 237 	211
32	Experimental results	239
Problems for chapter 4		

5 UNIFORM ASYMPTOTIC APPROXIMATIONS

33	Introduction	251
	Plane Couette flow	
34 35	The integral representations of the solutions The differential equation method	256 263
	General velocity profiles	
36	A preliminary transformation	265

- 37 The inner and outer expansions 267
 The inner expansions, 268; The outer expansions, 271; The central matching problem, 276; Composite approximations, 278
- 38 Uniform approximations
 280
 The solution of well-balanced type, 280; The solutions of balanced type, 280; The solutions of dominant-recessive type, 283
- **39** A comparison with Lin's theory 285
- 40 Preliminary simplification of the eigenvalue relation 290
- 41 The uniform approximation to the eigenvalue relation 295 A computational form of the first approximation to the eigenvalue relation, 299; Results for plane Poiseuille flow, 301
- 42 A comparision with the heuristic approximations to the 305 eigenvalue relation

The local turning-point approximation to $\phi_3(z)$, 305; Tollmien's improved approximation to $\phi_3(z)$, 306; The uniform approximation to $\phi_3(z)$ based on the truncated equation, 308; The uniform approximation to $\phi_3(z)$ based on the Orr-Sommerfeld equation, 309

43 A numerical treatment of the Orr-Sommerfeld problem 311 using compound matrices

Symmetrical flows in a channel, 315; Boundarylayer flows, 316

317

Subject index

Problems for chapter 5

6 ADDITIONAL TOPICS IN LINEAR STABILITY THEORY

- 44 Instability of parallel flow of a stratified fluid 320 Introduction, 320; Internal gravity waves and Rayleigh-Taylor instability, 324; Kelvin-Helmholtz instability, 325
 45 Baroclinic instability 333
- **46** Instability of the pinch 339
- 47 Development of linear instability in time and space 345 Initial-value problems, 345; Spatially growing modes, 349

48	Instability of unsteady flows	353
	Introduction, 353; Instability of periodic flows, 354;	
	Instability of other unsteady basic flows, 361	
Pro	blems for chapter 6	363
	7 NONLINEAR STABILITY	
49	Introduction	370
	Landau's theory, 370; Discussion, 376	
50	The derivation of ordinary differential systems governing	380
	stability	
51	Resonant wave interactions	387
	Internal resonance of a double pendulum, 387;	
	Resonant wave interactions, 392	
52	Fundamental concepts of nonlinear stability	398
	Introduction to ordinary differential equations, 398;	
	Introduction to bifurcation theory, 402; Structural	
	stability, 407; Spatial development of nonlinear	
F 3	stability, 416; Critical layers in parallel now, 420	400
53	The energy method 424. Maximum and minimum	423
	energy in vortex motion 432: Application of boun-	
	dary-layer theory to cellular instability 434	
54	Some applications of the nonlinear theory	435
	Bénard convection, 435: Couette flow, 442:	
	Parallel shear flows, 450	
Pro	blems for chapter 7	458
	APPENDIX. A CLASS OF	
	GENERALIZED AIRY FUNCTIONS	
A1	The Airy functions $A_k(z)$	465
A2	The functions $A_k(z, p)$, $B_0(z, p)$ and $B_k(z, p)$	466
A3	The functions $A_k(z, p, q)$ and $B_k(z, p, q)$	472
A4	The zeros of $A_1(z, p)$	477
4	Addendum: Weakly non-parallel theories for the Blasius	479
t	boundary layer	40.5
	Solutions	481
	Bioliography and author index Motion picture index	505 505
	MUTION DICTURE INDEX	593

597