Contents

1	Intr	oduction	1
Part I The Solutions of the Dirac Equation in Hydrogenic Atoms			
2	$\operatorname{Th}\epsilon$	Electromagnetic Fields Created	
	by '	Γime-Sinusoidal Current	5
	2.1	Properties of the Electromagnetic Field Emitted	
		by an Electron Bound in an Atom	5
	2.2	The Field at Large Distance of a Time-Periodic Current	6
	2.3	Source Currents of Time-Sinusoidal Polarized Field	7
		2.3.1 Linear Polarization: $\epsilon = 0$	7
		2.3.2 Circular Polarizations: $\epsilon = \pm 1 \dots $	7
	2.4	Flux of the Poynting Vector Through a Sphere	
		of Large Radius	8
	2.5	Units	9
3	The	e Dirac Equation of the Electron	
	in t	he Real Formalism	
	3.1	Algebraic Preliminaries: A Choice of Formalism	11
		3.1.1 Quaternions and Biquaternions	
		3.1.2 The Hamilton Quaternion and the Pauli Spinor	15
		3.1.3 The Hestenes Spinor and the Dirac Spinor	16
	3.2	The Hestenes Real Form of the Dirac Equation	18
	3.3	The Dirac Equation in Real Biquaternion	18
	3.4	Notations	18
4	The	e Solutions of the Dirac Equation	
	\mathbf{for}	the Central Potential in the Real Formalism	19
	11	General Approach	19

	4.2	The I	Biquaternionic Form of the Solutions	
		in Spł	nerical Coordinates	20
		4.2.1	A Biquaternionic System	20
		4.2.2	The Fundamental Quaternionic Equation	21
		4.2.3	The Radial Differential System	21
		4.2.4	A General Biquaternionic Solution	22
		4.2.5	The Dirac Probability Current and the Conditions	
			of Normalization	23
	4.3	The S	olution of the Quaternionic Equation	24
		4.3.1	The Differential System Implying the Angle Theta	24
		4.3.2	Properties of the Solutions of Equation	
			$(r \wedge \nabla)S = \lambda S \dots \dots$	24
		4.3.3	Expression of the Solutions by Means of the Legendre	
			Polynomials	25
		4.3.4	Expression of the Solutions by Means of a Recursion	
			Formula	26
	4.4	Soluti	ons of the Radial Differential System for the Discrete	
			rum	27
		4.4.1	Solutions of the System	27
		4.4.2	The Levels of Energy for the Discrete Spectrum	29
		4.4.3	Case of the States $1S1/2$, $2P1/2$, and $2P3/2$	29
		4.4.4	Note: The Gamma and the Confluent Hypergeometric	
			Functions	30
	4.5	Soluti	ons in the Pauli Approximation and for the Schrödinger	
			ion	31
		4.5.1	The Pauli Approximation	31
		4.5.2	Solution of the Schrödinger Equation	
		4.5.3		
			, , , , , , , , , , , , , , , , , , , ,	
Da:		Field	s Created by the Dirac Transition Currents	
			States	
5			c Transition Currents Between Two States	31
	5.1		mptions on the Source Current and the Release	0.77
			ergy	
		5.1.1	<u>*</u>	
			Assumptions on the Release of Energy	
	5.2	The 'I	Transition Current Between Two States	38
6	The	e Field	d at Large Distance Created by the Transition	
	Cin	rents		41
	Cui			
	6.1		ization of the Emitted Light	41
			ization of the Emitted Light	41 42

		Contents	Γ
	6.4 6.5	Circular Polarizations	4
7	Cas 7.1 7.2 7.3	General Formulas. The Pauli Approximation and the Schrödinger Theory Spontaneous Emission 7.3.1 The Energy Balance 7.3.2 Spontaneous Emission in the Transitions $2P1/2 - 1S1/2 \text{ and } 2P3/2 - 1S1/2 \text{ for the Hydrogen}$ Atom	4 4 4 4 4
Par	rt II	I Interaction with Radiation	
8	Inte 8.1 8.2	eraction with an Incident Wave: The Retardation	5
9	Rel 9.1	ativistic Expression of the Matrix Elements	5 5 5 5 6
Pa	rt IV	The Photoeffect	
10	10.1	Radial Functions of the Continuum Solution of the Radial System 10.1.1 General Form of the Solution 10.1.2 A Choice of Variable 10.1.3 Normalization on the Energy Scale The Different Approximations of the Radial Functions 10.2.1 The Approximation $Z^2\alpha^2\ll\kappa^2$	6 6
		10.2.2 The Approximation $Z^2\alpha^2\ll n^2$ or Pauli–Schrödinger Approximation	7 7 7

X	Contents

11	Matrix Elements for the Transitions 1S1/2-Continuum 11.1 The transitions 1S1/2-Continuum in the Dipole	73
	·	73
		74
	, , , , , , , , , , , , , , , , , , , ,	75
		76
	- · · · · · · · · · · · · · · · · · · ·	77
12	Matrix Elements for the Relativistic Transitions	
		81
		81
		83
		84
	12.4 Conclusion	88
13	The Radiative Recombination	89
	13.1 Motivations and Definition of Cross Sections	89
	13.2 Some Numerical Results	90
Par	rt V Interaction with a Magnetic Field	_
14	The Zeeman Effect	95
	Perturbation	95
	14.2 The Margenau Formula: The Landé Factor	96
Par	rt VI Addendum	
15	The Contribution of the Discrete Spectrum	
	to the Lamb Shift of the 1S1/2 State	
	15.1 The Lamb Shift	
	15.2 Nonrelativistic Calculation	
	15.3 Relativistic Calculation	
	15.4 Note	06
Pa	rt VII Appendices	_
A	The Hestenes Spinor and the Pauli and Dirac Spinors 1	09
	A.1 The Pauli Spinor as a Decomposition of the Hamilton	- 0
	Quaternion	09
	A.2 The Dirac Spinor as a Decomposition of the Biquaternion 1	

	Contents XI
	A.3 The Hestenes Spinor and the Dirac Matrices
В	The Real Formalism and the Invariant Entities113B.1 Properties of the Hestenes Spinor113B.2 The Proper Angular Momentum or Bivector Spin113B.3 The Energy-Momentum Vector114
\mathbf{C}	The Total Angular Momentum Operator115
D	The Main Properties of the Real Clifford Algebras117
${f E}$	The Expression of the Transition Current
\mathbf{F}	Conservation of the Charge Transition Current
G	An Approximation Method for Time-Dependent Perturbation
н	Perturbation by a Plane Wave
\mathbf{Re}	ferences
Inc	lex