Contents

PREFACE	vii
---------	-----

Theory of Elasticity at the Nanoscale

H. L. Duan, J. Wang and B. L. Karihaloo

	Abstract	2
1.	Introduction	2
2.	Eshelby Formalism for Nano-inhomogeneities	6
3.	Application of Eshelby Formalism for Nano-inhomogeneities	19
4.	Micromechanical Framework for Nano-inhomogeneities with Interface Stress	30
5.	Application of Micromechanical Framework for Nano-inhomogeneities	34
6.	Scaling Laws for Properties of Nanostructured Materials	57
7.	Conclusions	62
	Acknowledgment	63
	References	63

Connections between Elastic and Conductive Properties of Heterogeneous Materials

I. Sevostianov and M. Kachanov

	Abstract	71
1.	Introduction	72
2.	Overview of Existing Approaches to Cross-property Connections	74
3.	Quantitative Characterization of Microstructures: General Considerations	95
4.	Materials with Isolated Inhomogeneities: Microstructural Parameters for the Effective Elasticity and Effective Conductivity	102

Contents

5.	Explicit Cross-property Connections for Anisotropic Two-phase	
	Composites	133
6.	Cross-property Connections for Anisotropic Inhomogeneities	155
7.	Applications of Cross-property Connections to Specific Materials	
	Science Problems	182
8.	Contact of Rough Surfaces: The Elasticity–Conductivity Connection \dots	210
9.	Plastic Yield Surfaces of Anisotropic Porous Materials in Terms of	
	Effective Electric Conductivities	225
10.	Conclusions	238
А.	On Approximate Character of Elastic and Conductive Anisotropies	239
B.	Tensor Basis for Transversely Isotropic Fourth-rank Tensors	241
C.	Series of Associated Elliptic Functions and Relevant Equations	244
	Acknowledgment	246
	References	246

Coarse Graining in Elasto-viscoplasticity: Bridging the Gap from Microscopic Fluctuations to Dissipation

M. Hütter and T. A. Tervoort

	Abstract	254
1.	Introduction	257
2.	GENERIC Framework of Nonequilibrium Thermodynamics. I. Fundamentals	259
3.	Applications of the GENERIC Formalism	263
4.	GENERIC Framework. II. Methodology of Coarse Graining	279
5.	Applications of the Coarse-graining Procedure	288
6.	Discussion	308
	Acknowledgments	312
А.	Calculations Related to Hydrodynamics (Section 3.3)	312
B.	Derivation of $L^{(\hat{F}_{\alpha\beta},u_{\gamma})}(\mathbf{r},\mathbf{r}')$ in Eq. (5.12)	313
	References	314
Sui	BJECT INDEX	319

vi