Contents

1	Intro	duction .	•••••••••••••••••	1
2	A Bi	rief Histor	y of Cathodic Arc Coating	7
	2.1	Introdu	ction	7
	2.2	Cathod	ic Arcs in the Eighteenth Century	8
		2.2.1	The Capacitor: Energy Storage for Pulsed	
			Discharges	8
		2.2.2	Priestley's Cathodic Arc Experiments	10
		2.2.3	Experiments Leading to the Electrochemical	
			Battery	15
	2.3	Cathod	ic Arcs in the Nineteenth Century	17
		2.3.1	Improvements to the Voltaic Pile	17
		2.3.2	Davy's Observation of Pulsed	
			Discharges	18
		2.3.3	Petrov's Observation of Continuous Arc	
			Discharges	19
		2.3.4	Davy's Work on Continuous Arc Discharges	22
		2.3.5	Electromagnetic Induction	24
		2.3.6	Rühmkorff Coil and Pulsed Discharges	24
		2.3.7	Discharge Experiments in Gases and "In Vacuo"	26
		2.3.8	Faraday's Deflagrator	28
		2.3.9	Optical Emission Spectroscopy	30
		2.3.10	Maxwell	30
		2.3.11	Wright's Experiments: Coatings by Pulsed	
			Glow or Pulsed Arc?	30
		2.3.12	Lecher's Arc Experiments: Discontinuous Current	
			Transfer	31
		2.3.13	Goldstein's Canal Rays	33
		2.3.14	Edison's Coating Patents	33

xii Contents

		2.3.15		- 34
		2.3.16	Early Probe Experiments in Arc Plasmas	35
	2.4	Cathod	ic Arcs in the Twentieth Century	36
		2.4.1	Around the Year 1905: Einstein, Weintraub,	
			Stark, and Child.	36
		2.4.2	The Decades Until WWII	45
		2.4.3	Secret Work During WWII	46
		2.4.4	The Quest for the "Correct" Current Density	
			and Cathode Model	47
		2.4.5	Ion Velocities: Values and Acceleration	
			Mechanism.	49
		2.4.6	Cathodic Arc Deposition Is Emerging	
			as an Industrial Process	50
		2.4.7	Large-Scale Industrial Use in the 1980s	
			and 1990s	55
		2.4.8	Macroparticle Filtering: Enabling Precision	
			Coating for High-Tech Applications	- 56
	2.5	Cathod	ic Arcs at the Beginning of the Twenty-First	
		Century	y	59
		2.5.1	Advances in Diagnostics and Modeling of Arc	
			Plasma Processes	- 59
		2.5.2	Improvements of Coating Quality and	
			Reproducibility, Enabling High-Tech	
			Applications.	60
		2.5.3	Cathodic Arcs for Large-Area Coatings	61
		2.5.4	Multilayers and Nanostructures of	
			Multi-component Materials Systems.	62
	Refe	rences	• • • • • • • • • • • • • • • • • • • •	62
3	The	Physics of	f Cathode Processes	75
	3.1		letion	76
	3.2		of Collective Electron Emission Processes:	
			State Models.	79
		3.2.1	Thermionic Emission	79
		3.2.2	Field-Enhanced Thermionic Emission	82
		3.2.3	Field Emission	84
		3.2.4	Thermo-field Emission	86
	3.3	Refiner	nents to the Electric Properties of Metal Surfaces	87
		3.3.1	Jellium Model and Work Function	87
		3.3.2	The Role of Adsorbates	90
		3.3.3	The Role of Surface Roughness	94
	3.4	Theory	of Collective Electron Emission Processes:	
			ationary Models	95
		3.4.1	Ion-Enhanced Thermo-field Emission	95
		3.4.2	The Existence of a Critical Current Density	- 98

	3.4.3	The Tendency to Non-uniform Emission:	
	244	Cathode Spots	98
	3.4.4	Energy Balance Consideration for Cathodes	99
	3.4.5 3.4.6	Stages of an Emission Center	104
	3.4.0	Plasma Jets, Sheaths, and Their Relevance to	
	247	Spot Ignition and Stages of Development	106
	3.4.7	Explosive Electron Emission and Ecton	
	340	Model.	109
	3.4.8	Explosive Electron Emission on a Cathode with	
	240	Metallic Surfaces	111
	3.4.9	Explosive Electron Emission on a Cathode	
2.6	T	with Non-metallic Surfaces	113
3.5		Spot Model	114
	3.5.1	Introduction to Fractals	114
	3.5.2	Spatial Self-Similarity	116
	3.5.3	Temporal Self-Similarity	118
	3.5.4	Fractal Character and Ignition of Emission	
		Centers.	122
	3.5.5	Spots, Cells, Fragments: What Is a Spot,	
		After All?	126
	3.5.6	Cathode Spots of Types 1 and 2	128
	3.5.7	Cathode Spots on Semiconductors and	
		Semi-metals: Type 3	131
	3.5.8	Arc Chopping and Spot Splitting	132
	3.5.9	Random Walk	133
	3.5.10	Self-Interacting Random Walks	135
	3.5.11	Steered Walk: Retrograde Spot Motion	137
	3.5.12	But Why Is the Cathode Spot Moving in the	
		First Place?	145
3.6		odes	146
3.7		hesive Energy Rule	149
	3.7.1	Formulation	149
	3.7.2	Other Empirical Rules	150
	3.7.3	Experimental Basis	150
	3.7.4	Physical Interpretation	151
	3.7.5	Quantification	153
	3.7.6	Related Observations: Ion Erosion and Voltage	
		Noise	153
3.8		e Erosion	155
3.9		Formation	158
	3.9.1	Phase Transitions.	158
	3.9.2	Non-ideal Plasma	159
	3.9.3	Ion Acceleration	162
Refe	rences		163

Contents

xiii

xìv Contents

4	The I	Interelect	rode Plasma 🖾	175
	4.1	Plasma	Far from Cathode Spots	175
	4.2	Special	Cases of Plasma Expansion	178
		4 .2.1	Plasma Expansion into Vacuum	178
		4.2.2	Plasma Expansion Dominated by an External	
			Magnetic Field	179
		4.2.3	Plasma Expansion for High-Current Arcs	180
		4.2.4	Plasma Expansion into Background Gas	181
	4.3	Ion Ch	arge State Distributions	182
		4.3.1	Experimental Observations	182
		4.3.2	Local Saha Equilibrium: The Instantaneous	
			Freezing Model	183
		4.3.3	Partial Saha Equilibrium: The Stepwise Freezing	100
			Model.	186
		4.3.4	Plasma Fluctuations	189
		4.3.5	Effect of an External Magnetic Field	192
		4.3.6	Effect of Processing Gas	195
	4.4		ergies	197
		4.4.1	Ion Energy Distribution Functions for Vacuum	177
			Arcs	197
		4.4.2	Ion Energies in the Presence of Magnetic	177
			Fields	203
		4,4,3	Ion Energy Distribution Functions for Cathodic	205
			Arcs in Processing Gas	206
	4.5	Neutra	ls in the Cathodic Arc Plasmas	200
	1.5	4.5.1	Sources and Sinks of Neutrals.	207
		4.5.2	The Effects of Metal Neutrals on the Ion Charge	207
		1.0.2	States	208
		4.5.3	The Effects of Gas Neutrals on the Ion Charge	200
		4.0.0	States	214
		4.5.4	The Effects of Neutrals on the Ion Energy	214
	Refe		The Effects of Recutais on the foil faleigy	217
	1010	1011003	•••••••••••••••••••••••••••••••••••••••	210
5	Cath	odic Arc	Sources	227
	5.1		uous Versus Pulsed: Advantages and Disadvantages	
			Switching and Pulsing	227
	5.2		c Sources	229
		5.2.1	Random Arc Sources.	229
		5.2.2	Steered Arc Sources.	232
		5.2.3	Sources with Challenging Cathodes	239
		5.2.4	Sources with Multiple Cathodes	243
	5.3		Arc Sources	243
		5.3.1	Miniature Sources	243
		5.3.2	High-Current Pulsed Arc Sources	244
		5.3.3	Sources with Multiple Cathodes	244
				- TO

Contents	XV

.

5.4	Arc Triggering	250
	5.4.1 Contact Separation	250
	5.4.2 Mechanical Trigger	250
	5.4.3 High-Voltage Surface Discharge	251
	5.4.4 Low-Voltage and "Triggerless" Arc Ignition	252
	5.4.5 Laser Trigger	253
	5.4.6 Plasma Injection	254
	5.4.7 Trigger Using an ExB Discharge	255
5.5	Arc Source Integration in Coating Systems	255
	5.5.1 Batch Systems	255
	5.5.2 In-Line Systems	258
Ref	erences	260
6 Mac	croparticles	265
6.1	Macroparticle Generation of Random Arcs	265
6.2	Macroparticle Generation of Steered Arcs.	203
6.3	Macroparticle Generation of Pulsed Arcs	277
6.4	Macroparticles from Poisoned Cathodes	278
6.5	Macroparticle–Plasma Interaction	278
0.5	6.5.1 Plasma Effects on Macroparticles	279
	6.5.2 Mass Balance.	280
	6.5.3 Energy Balance	283
	6.5.4 Momentum Balance	285
6.6	Interaction of Macroparticles with Surfaces	200 290
6.7	Defects of Coatings Caused by Macroparticles	290 291
6.8	Mitigation Measures.	291
	crences	295
	croparticle Filters	299
7.1	Introduction to Macroparticle Filtering.	299
7.2	Figures of Merit	300
	7.2.1 Filter Efficiency	300
	7.2.2 System Coefficient	301
	7.2.3 Particle System Coefficient	301
	7.2.4 Attenuation Length	302
7 •	7.2.5 Normalized Macroparticle Reduction Factor	304
7.3	Theory of Plasma Transport in Filters.	305
	7.3.1 Motion of Charged Particles and Plasma	205
	Models.	305
	7.3.2 Magnetization and Motion of Guiding Center	305
	7.3.3 Existence of an Electric Field in the Magnetized	
	Plasma	308
	I	200
	of Ion Transport in Curved Filters	309
	7.3.5 Kinetic Models: Rigid Rotor Equilibria	311

8

	7.3.6	Plasma Optics	314
	7.3.7	Drift Models	318
	7.3.8	Magneto-hydrodynamic Models	320
7.4	Experin	nental and Industrial Filter Designs	325
	7.4.1	Filters of Closed and Open Architecture	325
	7.4.2	Filters for Circular and Linear Plasma Source	
		Areas	326
	7.4.3	Straight Filter	327
	7.4.4	Straight Filter with Axial Line-of-Sight	
		Blockage	328
	7.4.5	Straight Filter Combined with Annular-Cathode	
		Plasma Source	329
	7.4.6	Straight Filter with Off-Axis Substrate	329
	7 .4 .7	Classic 90° Duct Filter	330
	7.4.8	Modular Filter	331
	7.4.9	Knee-Filter.	3 31
	7.4.10	Large-Angle, Ω - and S-Duct Filters	332
	7.4.11	Off-Plane Double Bend Filter	333
	7.4.12	Duct Filter for Linear Arc Source	335
	7.4.13	Rectangular S-Filter for Linear Arc-Source	335
	7.4.14	Dome Filter	336
	7.4.15	Magnetic Reflection Configuration.	336
	7.4.16	Bi-directional Linear Filter	337
	7.4.17	Radial Filter.	337
	7.4.18	Annular Cathode Apparatus	339
	7.4.19	Annular Venetian Blind Filter	339
	7.4.20	Linear Venetian Blind Filter	340
	7.4.21	Open, Freestanding 90° Filter	341
	7.4.22	Open, Freestanding S-Filter	342
	7.4.23	Twist Filter	342
	7.4.24	Stroboscopic Filter	344
	7.4.25	Rotating Blade Filter	344
	7.4.26	Parallel Flow Deposition	345
7.5	Filter O	Pptimization	346
	7.5.1	Biasing	346
	7.5.2	Arc Source–Filter Coupling	349
7.6		of Filtering on Ion Charge State and Energy	
		ution	350
7.7		Density Profile and Coating Uniformity	351
Refe	rences	• • • • • • • • • • • • • • • • • • • •	356
	D		•
Film o 1		on by Energetic Condensation	363
8.1		ic Condensation and Subplantation.	364
8.2		ary Electron Emission.	369
8.3	Neutral	s Produced by Self-Sputtering and Non-sticking	371

			Contents	xvii
	8.4	Film Pror	perties Obtained by Energetic Condensation	374
			Structure Zone Diagrams	374
			Stress and Stress Control.	376
			Preferred Orientation.	381
			Adhesion	383
			Hall–Petch Relationship	384
	8.5	Metal Ion	Etching.	385
	8.6	Metal Pla	sma Immersion Ion Implantation	
			sition (MePIIID).	387
	8.7		g with Bipolar Pulses – The Use of Ions	
		and Electri	rons , , ,	390
	8.8	Substrate	Biasing Versus Plasma Biasing	392
	8.9		d Arc Suppression.	393
	8.10	Case Stud	ly: Tetrahedral Amorphous Carbon (ta-C)	394
	Refe		· · · · · · · · · · · · · · · · · · ·	399
9			tion	409
	9.1		ation in Vacuum and Gases: Introduction	409
	9.2		"Poisoning": Effects on Spot Ignition	
		and Erosi	on Rate	410
	9.3	Cathode "Poisoning": Hysteresis 4		
	9.4	Interaction of the Expanding Spot Plasma		
		with the Background Gas 4		
	9.5		n and Growth	418
	9.6		por and Hydrogen Uptake	422
	9.7		igh-Pressure Environments	425
	Refe	rences	•••••••••••••••••••••••••••••••••••••••	426
10	Some	Applicatio	ns of Cathodic Arc Coatings	429
	10.1		W	429
	10.2		Coatings for Wear Applications	434
		10.2.1	TiN and Other Binary Nitrides	434
		10.2.2	$Ti_{I-x}Al_xN$.	436
		10.2.3	Other Ternary and Quaternary Nitrides,	120
			Carbides, and Nanocomposites	437
		10.2.4	Multilayers, Nanolayers, and	107
			Nanolaminates.	440
		10.2,5	Replacement of Hexavalent Chromium	441
		10.2.6	Carbides	442
		10.2.7	Multi-Element Coatings on Turbine Blades	443
		10.2.8	Cubic Boron Nitride and Boron-Containing	
		. (()	Multi-Component Coatings.	443
		10.2.9	Tetrahedral Amorphous Carbon (ta-C)	445
		10.2.10	Hydrogen, Nitrogen, and Metal-Doped	
		1012110	Tetrahedral Amorphous Carbon	44 7

.

.

xviii Contents

	10.3	Decorative Coatings	
		10.3.1 Appearance of Color	
		10.3.2 Color by Interference.	451
		10.3.3 Color by Spectrally Selective Absorption	452
		10.3.4 The L*a*b* Color Space	455
		10.3.5 Example: Color of Nitrides	457
	10.4	Optical Coatings	
	10.5	Transparent Conductor, Solar Energy, Electronic,	
		and Photocatalytic Applications	
	10.6	Field Emission Applications.	
	10.7	Metallization	
		10.7.1 Ultrathin Metal Films	466
		10.7.2 Metallization of Integrated Circuits	467
		10.7.3 Metallization of Superconducting Cavities	469
		10.7.4 Metallization for Specialty Brazing	
		10.7.5 Metallization Using Alloy Cathodes	472
	10.8	Bio-compatible Coatings	472
		10.8.1 Carbon-Based Materials	473
		10.8.2 Titanium-Based Materials	475
	10.9	Surface Cleaning by Arc Erosion and Ion Etching	476
	Refere	ences	
A	Plasm	uas and Sheaths: A Primer	491
	A.2	Sheaths	491
	A.1	Plasmas	494
	Refere	ences	497
B	Period	dic Tables of Cathode and Arc Plasma Data	498
		ences	
Inde	x		517