Contents

1	Introduction .					1
---	----------------	--	--	--	--	---

Part I Nonrelativistic Collisions

2	Firs	t Orde	r Considerations	$\overline{7}$	
	2.1	Quant	um Plane-Wave Born Approximation	7	
		2.1.1	Elastic Target Mode	9	
		2.1.2	Inelastic Target Mode	10	
		2.1.3	Collisions with Large Momentum Transfer.		
			Free Collision Model	10	
	2.2	Semi-O	Classical Approach	12	
3	Con	siderat	ions Beyond First Order Perturbation Theory	17	
	3.1	Second	l Order Approximation	17	
	3.2	Distor	ted-Wave Approach	20	
		3.2.1	Symmetric Eikonal Model	23	
		3.2.2	Symmetric Eikonal Model: 'Electrostatic' Approach	24	
		3.2.3	An Example of Applications:		
			Electron Angular Distribution	27	
	3.3	Coupled Channel Approach			
	3.4	Sudde	n Approximation	30	
		3.4.1	Elastic Contribution from the Target	31	
		3.4.2	Total Contribution from the Target	32	
	3.5	Glaub	er Approximation	33	
	3.6	Classic	cal Trajectory Monte Carlo Approach	35	
	3.7	Projec	tile Electron Loss. Comparison with Experiment	37	
		3.7.1	Total Loss Cross Section	37	
		3.7.2	Loss Cross Section Resolved over the Final Charge		
			States of the Target	39	

3.7.3	Longitudinal Momentum Distribution of Target	
	Recoil Ions	40
3.7.4	Two-Center Interactions in $3.6 \mathrm{MeV} \mathrm{u}^{-1} \mathrm{C}^{2+} + \mathrm{He}$	
	$\rightarrow C^{3+} + He^+ + 2e^-$ Collisions	42
3.7.5	Mutual Electron Removal in $0.2 \mathrm{MeV} \mathrm{H^-}$ + He	
	Collisions	44

Part II Relativistic Collisions

4	Int	oduction to Relativistic Collisions	51
	4.1	Elements of the Special Theory of Relativity	51
		4.1.1 The Lorentz Transformation	52
		4.1.2 Four-Dimensional Space and Four-Vectors	53
		4.1.3 Relativistic Addition of Velocities	55
		4.1.4 Transformation of Energy–Momentum	55
		4.1.5 Transformations of Cross Sections	56
	4.2	The Electromagnetic Field	57
		4.2.1 The Maxwell Equations and the Conservation	
		of Electric Charge	57
		4.2.2 Potentials of the Electromagnetic Field.	
		Gauge Transformations	58
		4.2.3 Maxwell Equations for the Field Potentials	59
	4.3	The Dirac Equation	60
		4.3.1 The Hamiltonian Form	60
		4.3.2 Gauge Invariance of the Dirac Equation	62
		4.3.3 The Covariant Form	62
		4.3.4 Classification of States in a Spherical Potential	62
5	Des	criptions of Collisions Within the First Order	
	App	roximation in the Projectile–Target Interaction	67
	5.1	Preliminary Remarks	67
	5.2	Simplified Semi-Classical Consideration	70
	5.3	Plane-Wave Born Approximation	73
		5.3.1 The Form-Factor Coupling	79
	5.4	Semi-Classical Approximation	79
		5.4.1 Equivalence of the Semi-Classical and the Plane-Wave	
		Born Treatments	82
	5.5	Relativistic Features and the Nonrelativistic Limit	83
	5.6	Consideration on the Base of Quantum Electrodynamics	84
	5.7	Gauge Independence and the Continuity Equation	86
	5.8	Calculations in the Coulomb Gauge	88
		581 The Longitudinal and The Control of the	
		5.5.1 The Longitudinal and Transverse Contributions	

Contents	IX
----------	----

5.9	Simpli	fication of the Atomic Transition Four-Current:
	The 'N	Nonrelativistic Atom' Approximation
- 10	5.9.1	The Effective Atomic Charge
5.10	Manip	ulations with the Transition Matrix Elements
	as a C	hange of Gauge
	5.10.1	Calculations with Approximate States
		for the Projectile Electron
5.11	Projec	tile-Electron Transitions as a Three-Body Problem 100
	5.11.1	Relativistic, Nonrelativistic and Semi-Relativistic
		Electron Descriptions
5.12	Relativ	vistic Ion–Atom Collisions and Nonrelativistic
	Form-l	Factors
5.13	Electro	on–Positron Pair Production in Collisions of Bare Ions
	with N	Veutral Atoms
5.14	Two-C	Center Dielectronic Transitions
	5.14.1	Mutual Projectile–Target Ionization
	5.14.2	Radiation Field and Resonant Two-Center
		Dielectronic Transitions
The	orotica	I Mathada Extanding boyond the Eirst
Orde	or Λ nn	rovination 191
6 1	Colligi	and with Light Atoma: Proliminant Demarks
6.2	Symmetry	outric Fikonal Model
0.2	691	The Neurolativistic Limit
	622	The Rolationship with the First Order Theory 195
	622	Projectiles with More Then One Electron 196
	0.2.3	Inclusion of the Nuclear Nuclear Interaction
	625	Colligions with Two Flootnon Atoms
	626	Some Applications
63	Colligi	some Applications
0.5 6 4	Evtron	a Beletivistic Collisions with Hearn Atams
0.4	6 4 1	Light Cone Detentiale
	649	Classical Electron in the Eicld of a David M
	0.4.2	with the Speed of Light
	612	Overturn Floatner in the Field of D. (11) M.
	0.4.5	with the Speed of Light
	6.4.4	Light-Cone Approximation for Ion-Atom Collisions 159
	6.4.5	Collisions at High but Finite γ : Combination
		of the Light-Cone and First Order Approaches 164
	6.4.6	The Light-Cone Approximation for a Nonrelativistic
		Electron
6.5	Collisio	ons at Relatively Low Energies:
	Three-I	Body Distorted-Wave Models

6

		 6.5.1 Symmetric Eikonal Approximation
		Approximation
		6.5.3 The Relationship with the First Order Approximation and with Other Distorted-Wave Models
		6.5.4 Comparison of Relativistic and Semi-Relativistic
		Electron Descriptions
	66	0.5.5 Higher Orders versus Screening
	6.0	Nonperturbative Approaches 179
	0.1	6.7.1 Classical Description
		6.7.2 Collisions at Relatively Low Energies:
		Nonperturbative Quantum Descriptions
7	Imp	act Parameter Dependence of Projectile-Electron
	Exc	itation and Loss in Relativistic Collisions
	7.1	Preliminary Remarks
	7.2	Transition Amplitudes
		7.2.1 Elastic Target Mode
	7.0	7.2.2 Inelastic Target Mode
	1.3	Excitation of $Bi^{00+}(1s)$ in Collisions with Cu and He
		with Moderately Heavy Atoms 101
		7.3.2 Screening and Antiscreening in Ultrarelativistic
		Collisions with Very Light Atoms. 'Separation'
		of the Screening and Antiscreening Modes
		in the Impact Parameter Space
		7.3.3 Comparison between Excitation of Heavy Ions
		in Collisions with Neutral Atoms at Low and High $\gamma . . 195$
	7.4	Higher-Order Effects in the Loss Probability in Collisions
		at Asymptotically Large γ
8	Cro	ss Sections and Comparison with Experiment
	8.1	Electron Loss in Collisions at Low γ
	8.2	Excitation and Simultaneous Excitation-Loss in Collisions
		at Low γ
		8.2.1 Excitation
	0.0	8.2.2 Simultaneous Excitation-Loss
	8.3 0 1	Electron Loss in Collisions at Moderately High γ
	0.4	Compositions at high γ : Flectron Loss and Capture Cross Sections 215
		8.4.1 Electron Loss Cross Sections 216
		8.4.2 Electron Capture from Pair Production
	8.5	Screening Effects in Free–Free Pair Production

	8.6	Charge States of 33 TeV Pb Projectiles Penetrating Solid
		Targets: Multiple Collision Effects
		8.6.1 Fraction of Hydrogen-Like Ions
		8.6.2 Effective Loss Cross Section
	8.7	Differential Loss Cross Sections in Collisions at High γ 229
		8.7.1 Energy Spectra of Electrons Emitted by Projectiles
		Under the Single-Collision Conditions
		8.7.2 The Spectrum of Electrons Emitted by 33 TeV Lead
		Ions Penetrating Thin Foils. The Role of Excited
		States of the Projectile
	8.8	On the Longitudinal and Transverse Contributions
		to the Total Loss Cross Section
	8.9	Loss Cross Sections at Asymptotically High γ :
		Saturation Effect
	8.10	Excitation and Break-Up of Pionium in Relativistic
		Collisions with Neutral Atoms
	8.11	Higher-Order Effects at Asymptotically High γ
Α	App	endix
	A.I	Nonrelativistic Atom Approximation for the Screening
	• •	Mode
	A.2	The Schrödinger–Pauli Equation and Relativistic
		Collisions
		A.2.1 Wave Equation for a Nonrelativistic Electron $\frac{\pi^2}{2}$
		and the $-\frac{\Psi^2}{2c^2}\Psi$ Term
		A.2.2 'First Order' Amplitude and Nonconserved
		Electron Current
		A.2.3 Correct Form of the First Order Amplitude
		A.2.4 Few Remarks on the Treatment of the Transformation
		from the Klein–Gordon Equation to the Schrödinger
		Equation given in Some Textbooks
	A.3	On the Existence of the 'Overlap' Region
		A.3.1 Collisions with a Point-Like Charge
		A.3.2 Collisions with a Neutral Atom
	A.4	Radiative Atomic Processes and Galilean
		and Gauge Transformations
		A.4.1 One Radiating Atomic System and Two Reference
		Frames: Galilean Invariance
		A.4.2 Two Radiating Systems and One Reference Frame:
		The Problem of Gauge Dependence
		A.4.3 Example: Radiative Electron Capture
		A.4.4 A Gauge Test for the 1B and CDW Models
		of the Radiative Electron Capture
-	<i>•</i>	
Kei	terene	ces