Contents

1	Intr	oduction	1
	1.1	Why Fusion?	1
	1.2	What is Fusion?	2
	1.3	What is a Plasma?	3
		1.3.1 Fusion Energy Production and the Lawson Criterion	6
	1.4	What is a Tokamak?	9
	1.5	Feedback Control in Tokamaks 1	14
	1.6	Electromagnetic Control	15
		1.6.1 Modelling for Control 1	15
		1.6.2 Plasma Boundary Estimation 1	16
		1.6.3 Vertical Position Control 1	16
		1.6.4 Plasma Radial Position and Current Control	18
		1.6.5 Plasma Shape Control 1	19
		1.6.6 Other Magnetic Control Problems	20
		-	

Part I Plasma Modelling

2	Plasma Modelling for Magnetic Control		
	2.1	The Ideal Magnetohydrodynamics Theory	25
	2.2	Magnetohydrodynamics in Axisymmetric Toroidal Geometry	26
	2.3	A Plasmaless Model	30
	2.4	The Plasma Equilibrium	35
	2.5	A Linearized Model for Plasma Behaviour	40
•	тI		40
3	The	Plasma Boundary and its Identification	43
	3.1	Plasma Boundary Definition	43
	3.2	The Plasma Boundary Descriptors	46
		V A	
	3.3	Tokamak Magnetic Diagnostics for Plasma Shape Identification	50
	3.3 3.4	Tokamak Magnetic Diagnostics for Plasma Shape Identification Plasma Shape Identification	$\frac{50}{53}$

	3.5.1	Choice of the Eigenfunctions for the Fourier Expansion.	56
	3.5.2	Choice of the Singular Point for the Toroidal Harmonics	57
	3.5.3	Numerical Results	60
3.6	Taking	g into Account the Eddy Currents	60

Part II Plasma Control

4	Pla	sma Magnetic Control Problem 6	5
	4.1	Model for Controller Design 6	6
		4.1.1 Simulation Model 6	8
	4.2	Requirements for the Controller Design	8
		4.2.1 Gap Control Approach 6	9
		4.2.2 Typical Requirements and Constraints 7	'1
	4.3	Plasma Vertical Stabilization Problem 7	2
	4.4	Control of the Currents in the Active Coils	3
	4.5	Possible Different Solutions	5
5	Pla	sma Position and Current Control at FTU	9
	5.1	The FTU Simulation Model	0
		5.1.1 Plasma Model	51
		5.1.2 Plasma Shape Identification Block	3
		5.1.3 The Radial and Plasma Current Controllers	4
		5.1.4 The F and T Circuit Converter Models	5
	5.2	Choice of the Controller Gains	6
6	Pla	sma Vertical Stabilization	9
-	6.1	Vertical Stabilization Problem in the ITER Tokamak	;9
	6.2	Vertical Stabilization Problem for the TCV Tokamak	3
		6.2.1 Design of the Vertical Position Controller	6
7	Pla	sma Shape Control for ITER	9
-	7.1	Singular Perturbation Decomposition for the ITER Tokamak10	0
		7.1.1 Current and Shape Controller	3
	7.2	Simulation Results	15
8	Pla	sma Shape Control at TCV 11	1
0	81	Description of the TCV 11	1
	0.1	8.1.1 Magnetic Diagnostics	1 2
		8.1.2 Description of the Controlled Variables 11	1
	82	Design Specifications 11	5
	0.4	8 2 1 Controller Bobustness 11	5
		8.2.2 Quantization Errors in the Measurements 11	6
	83	A Solution Based on the H theory 11	7
	0.0	8.3.1 Choice of the Plant for the Design 11	8
		8.3.2 Description of the Weighting Functions 11	8
		Description of the Weighting I unchous	\circ

		8.3.3 Robust Stability	120
		8.3.4 Current and Shape Controller Synthesis	121
	8.4	Simulation Results	121
9	Pla	sma Shape Control at JET	125
	9.1	Control Requirements and Simplified Plasma Modelling	125
	9.2	The Controller Design	131
		9.2.1 Requirements and Motivations	131
		9.2.2 Optimal Output Regulation	132
		9.2.3 Design of PI Controllers	137
	9.3	Simulation Results	139
\mathbf{A}	Son	ne Mathematical Background Green's Functions for the Homogeneous Grad Shafranov	143
	11.1	Equation	1/3
	A.2	Solutions of the Homogeneous Grad–Shafranov Equation A.2.1 Green's Functions	145 144 145 145
	A.3	Ill-posedness and Plasma Shape Identification Problem	147
в	Uni	ts Used in Plasma Physics	151
Ref	feren	ces	153
Ind	ex		159