Contents

Introduction	1
--------------	---

Part I Thermodynamics of Ensembles of Classical Particles

1	$\mathbf{E}\mathbf{x}\mathbf{c}$	citations in Simple Atomic Ensembles	$\overline{7}$
	1.1	Thermodynamics and Dynamics of Particle Ensembles	7
	1.2	Interaction of Inert Gas Atoms	9
	1.3	Similarity Law for Simple Atomic Ensembles	13
	1.4	Evolution of Particle Ensembles	13
	1.5	Voids as Elementary Configurational Excitations	17
2	\mathbf{Str}	uctures of Ensembles of Interacting Particles	21
	2.1	Close-Packed Structures	21
	2.2	Shells in Close-Packed Structures	24
	2.3	Lennard-Jones Crystal	27
	2.4	Morse Crystal	29
	2.5	Surface Energy of Lennard-Jones and Morse Crystals	30
	2.6	Solid and Liquid Inert Gases Near the Triple Point	33
3	\mathbf{The}	ermodynamics of Dense Gases and Liquids	39
	3.1	Equation of State for an Ensemble	
		of Randomly Distributed Particles	39
	3.2	Equilibrium of Gas and Condensed States	42
	3.3	Liquid Surface Parameters	45
	3.4	Peculiarities of Similarity for Inert Gases	47
	3.5	Scaling Law for Molecular Systems	48
4	Clu	sters with Short-Range Interaction	51
	4.1	Configurations of Solid Clusters	
		with Pairwise Atomic Interactions	51

	1.0	D 1: 't' - (Class Dealed Classford	
	4.2	Peculiarities of Close-Packed Clusters	
		with Short-Range Interaction	53
	4.3	Constructing fcc-Clusters with Short-Range Interaction	54
	4.4	Growth of fcc Clusters	
		with Short-Range Atomic Interaction	56
	4.5	Regular Clusters of Close-Packed Structures	59
	4.6	Icosahedral Clusters	64
	4.7	Competition of Icosahedral and Close-Packed Structures	67
5	\mathbf{Ens}	embles of Classical Particles with Repulsion	75
	5.1	Thermodynamics of Ensembles of Repelling Particles	75
		Thermodynamics of Ensembles of Repening Factories	10
	5.2	A System of Hard Spheres	77
	$\begin{array}{c} 5.2 \\ 5.3 \end{array}$	A System of Hard Spheres Colloid Suspensions as Systems of Repelling Particles	77 80
	$5.2 \\ 5.3 \\ 5.4$	A System of Hard Spheres Colloid Suspensions as Systems of Repelling Particles Virial Theorem and Instability of Crystal Structure	73 77 80 82
	$5.2 \\ 5.3 \\ 5.4 \\ 5.5$	A System of Hard Spheres Colloid Suspensions as Systems of Repelling Particles Virial Theorem and Instability of Crystal Structure Phase Transition for an Ensemble of Repelling Atoms	73 77 80 82 88
	$5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6$	A System of Hard Spheres Colloid Suspensions as Systems of Repelling Particles Virial Theorem and Instability of Crystal Structure Phase Transition for an Ensemble of Repelling Atoms Phase Transitions in Inert Gases under High Pressure	73 77 80 82 88 90
	5.2 5.3 5.4 5.5 5.6 5.7	A System of Hard Spheres Colloid Suspensions as Systems of Repelling Particles Virial Theorem and Instability of Crystal Structure Phase Transition for an Ensemble of Repelling Atoms Phase Transitions in Inert Gases under High Pressure Structures of an Ensemble of Repelling Particles	73 77 80 82 88 90
	$5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7$	A System of Hard Spheres Colloid Suspensions as Systems of Repelling Particles Virial Theorem and Instability of Crystal Structure Phase Transition for an Ensemble of Repelling Atoms Structures of an Ensemble of Repelling Particles at Low Temperatures	77 80 82 88 90

Part II Configurational Excitations and Aggregate States of Ensembles of Classical Particles

6	Cor	ifigurational Excitation and Voids in Ensembles
	of E	Bound Classical Atoms
	6.1	Separation of Thermal and Configurational Degrees
		of Freedom of Clusters 99
	6.2	Lattice Model for the Order–Disorder Phase Transition100
	6.3	Chemical Equilibria and Phase Transitions
	6.4	Internal Voids in a System of Identical Particles
	6.5	Void Formation in Two Dimensions
	6.6	The Cell Model for Disk Particles
	6.7	Peculiarities of Configurational Excitation
		for Bulk Atomic Systems
	6.8	Two-State Approximation for Aggregate States
7	Cor	nfigurational Cluster Excitation
	wit	h Pairwise Interactions121
	7.1	Peculiarities of Configurational Excitation of Clusters 121
	7.2	Structural Phase Transition in a Solid Cluster
	7.3	Configurational Excitation of the Icosahedral Cluster
		of 13 Atoms
	7.4	The Cluster as a Microcanonical Ensemble of Bound Atoms 134
	7.5	The Cluster as a Canonical Ensemble of Bound Atoms137

	76	Configurational Excitation of the Jeosphedral Cluster
	1.0	of 55 Atoms
	7.7	Character of Configuration Transitions in Clusters
8	Pha	ase Transitions in Macroscopic Systems of Atoms149
	8.1	Configurational Excitation of a Solid
	8.2	Modified Lattice Model for Configurational Excitation151
	8.3	Parameters of Voids for Liquid Inert Gases
	8.4	Voids in a Macroscopic System of Bound Atoms
	8.5	Criterion of Existence of the Liquid State
	8.6	Freezing Points for Bulk Inert Gases
	8.7	General Liquid Properties161
9	Me	ting of Clusters and Bulk Atomic Ensembles
	9.1	Entanglement of Thermal and Configurational Excitations
		in Clusters
	9.2	Parameters of Melting
	9.3	Contradiction Between the Melting Criterion
		and Its Nature
	9.4	Definition of the Cluster Aggregate State
	9.5	Voids as Gateways to Fluidity
	9.6	Liquid-Gas Interface

Part III Dynamics of Configurational Excitations in Ensembles of Classical Particles

10	Coexistence of Cluster Phases
	10.1 Hierarchy of Equilibrium Times in Clusters
	10.2 Character of Phase Coexistence in Clusters: Surface Melting 181
	10.3 Two-Temperature Regime for Cluster Equilibrium
	10.4 Entropy of an Isolated Cluster in the Two-State Approach 187
	10.5 Temperatures of an Isolated Cluster Near the Melting Point 189
	10.6 Cluster Heat Capacity Near the Phase Transition
11	Glassy States of an Ensemble of Bound Atoms
	11.1 Glassy State from the Void Standpoint
	11.2 Diffusion of Voids in a Bulk Ensemble of Atoms
	11.3 Cell Model for Vacancy Diffusion Coefficients
	11.4 Kinetics of Transitions Between Aggregate States
	11.5 Formation of a Glassy State
	11.6 Saturated Vapor Pressure Over a Surface in a Glassy State 207
	11.7 Glassy State for an Ensemble of Repelling Particles
	11.8 More Peculiarities of Glassy States
	for Simple Atomic Systems

Х	Contents
12	Transport of Voids in Nucleation Processes
	12.1 Peculiarities of Nucleation Processes
	12.2 Transport of Voids in a Nonuniform Bulk Atomic System 219
	12.3 Growth of a Solid Cluster Inside a Liquid
	as Transport of Voids
	12.4 Wave Mechanism of the Phase Transition
13	Conclusion and Summary
Re	ferences
Ind	lex