Contents

Part I. Basic Experimental Facts and Theoretical Tools

1.	Intr	roduction	3
	1.1	Goal	3
	1.2	Brain: Structure and Functioning. A Brief Reminder	4
	1.3	Network Models	5
	1.4	How We Will Proceed	7
2.	The	e Neuron – Building Block of the Brain	9
	2.1	Structure and Basic Functions	9
	2.2	Information Transmission in an Axon	10
	2.3	Neural Code	12
	2.4	Synapses – The Local Contacts	13
	2.5	Naka–Rushton Relation	14
	2.6	Learning and Memory	16
	2.7	The Role of Dendrites	16
3.	Neu	ıronal Cooperativity	17
	3.1	Structural Organization	17
	3.2	Global Functional Studies. Location of Activity Centers	23
	3.3	Interlude: A Minicourse on Correlations	25
	3.4	Mesoscopic Neuronal Cooperativity	31
4.	Spil	kes, Phases, Noise:	
	Hov	v to Describe Them Mathematically?	
	We	Learn a Few Tricks and Some Important Concepts	37
	4.1	The δ -Function and Its Properties	37
	4.2	Perturbed Step Functions	43
	4.3	Some More Technical Considerations*	46
	4.4	Kicks	48
	4.5	Many Kicks	51
	4.6	Random Kicks or a Look at Soccer Games	52
	4.7	Noise Is Inevitable.	
		Brownian Motion and the Langevin Equation	54

4.8	Noise	in Active Systems	56
		Introductory Remarks	
	4.8.2	Two-State Systems	57
	4.8.3	Many Two-State Systems: Many Ion Channels	58
4.9	The C	Concept of Phase	60
	4.9.1	Some Elementary Considerations	60
		Regular Spike Trains	
	4.9.3	How to Determine Phases From Experimental Data?	
		Hilbert Transform	64
4.10	Phase	Noise	68
4.11	Origin	of Phase Noise [*]	71

Part II. Spiking in Neural Nets

5.	The	Lighthouse Model. Two Coupled Neurons
	5.1	Formulation of the Model
	5.2	Basic Equations for the Phases of Two Coupled Neurons 80
	5.3	Two Neurons: Solution of the Phase-Locked State
	5.4	Frequency Pulling and Mutual Activation of Two Neurons 86
	5.5	Stability Equations
	5.6	Phase Relaxation and the Impact of Noise
	5.7	Delay Between Two Neurons
	5.8	An Alternative Interpretation of the Lighthouse Model $\ldots \ldots 100$
6.	The	Lighthouse Model. Many Coupled Neurons 103
	6.1	The Basic Equations 103
	6.2	A Special Case. Equal Sensory Inputs. No Delay 105
	6.3	A Further Special Case. Different Sensory Inputs,
		but No Delay and No Fluctuations 107
	6.4	Associative Memory and Pattern Filter 109
	6.5	Weak Associative Memory. General Case*
	6.6	The Phase-Locked State of N Neurons. Two Delay Times 116
	6.7	Stability of the Phase-Locked State. Two Delay Times* 118
	6.8	Many Different Delay Times [*] 123
	6.9	Phase Waves in a Two-Dimensional Neural Sheet 124
	6.10	
	6.11	Phase Noise*
	6.12	Strong Coupling Limit.
		The Nonsteady Phase-Locked State of Many Neurons 130
	6.13	Fully Nonlinear Treatment of the Phase-Locked State* 134

_	- .	
7.		grate and Fire Models (IFM) 141
	7.1	The General Equations of IFM
	7.2	Peskin's Model
	7.3	A Model with Long Relaxation Times
		of Synaptic and Dendritic Responses 145
8.	Mai	ny Neurons, General Case,
	Con	nection with Integrate and Fire Model
	8.1	Introductory Remarks
	8.2	Basic Equations Including Delay and Noise
	8.3	Response of Dendritic Currents
	8.4	The Phase-Locked State
	8.5	Stability of the Phase-Locked State: Eigenvalue Equations 156
	8.6	Example of the Solution of an Eigenvalue Equation
		of the Form of (8.59) 159
	8.7	Stability of Phase-Locked State I:
		The Eigenvalues of the Lighthouse Model with $\gamma' \neq 0$ 161
	8.8	Stability of Phase-Locked State II:
		The Eigenvalues of the Integrate and Fire Model
	8.9	Generalization to Several Delay Times
	8.10	Time-Dependent Sensory Inputs
	8.11	Impact of Noise and Delay 167
	8.12	Partial Phase Locking
	8.13	Derivation of Pulse-Averaged Equations 168
Ap	pend	ix 1 to Chap. 8: Evaluation of (8.35)
4	nond	ix 2 to Chap. 8: Fractal Derivatives
Ap	pena	$1x \ 2 \ to \ Chap. \ 8: \ Fractal \ Derivatives \ldots \dots $
9.	Patt	tern Recognition Versus Synchronization:
		tern Recognition
	9.1	Introduction
	9.2	Basic Equations
	9.3	A Reminder of Pattern Recognition by the Synergetic Com-
		puter and an Alternative Approach
	9.4	Properties of the Synergetic Computer of Type II
	9.5	Limit of Dense Pulses
	9.6	Pulse Rates Are Positive
	9.7	Chopped Signals. Quasi-Attractors
	9.8	Appendix to Sect. 9.5

Contents

XI

10.	Patt	tern Recognition Versus Synchronization:	
	Syn	chronization and Phase Locking	207
	10.1	The Synchronized State	207
	10.2	Stability of the Synchronized State	212
		Stability Analysis Continued:	
		Solution of the Stability Equations	215
	10.4	Generalization to More Complicated Dendritic Responses*	
	10.5	Stability Analysis for the General Case	
		of Dendritic Responses [*]	223
	10.6	From Synchronization to Phase Locking	
		Conclusion to Chaps. 9 and 10:	
		Two Pathways to Pattern Recognition	234

Part III. Phase Locking, Coordination and Spatio-Temporal Patterns

11.	Pha	se Locking via Sinusoidal Couplings
		Coupling Between Two Neurons
		A Chain of Coupled-Phase Oscillators
	11.3	Coupled Finger Movements
	11.4	Quadruped Motion
		Populations of Neural Phase Oscillators
		11.5.1 Synchronization Patterns
		11.5.2 Pulse Stimulation
		11.5.3 Periodic Stimulation
12.		se-Averaged Equations
	12.1	Survey
		The Wilson–Cowan Equations
	12.3	A Simple Example
		Cortical Dynamics Described by Wilson–Cowan Equations 258
	12.5	Visual Hallucinations
	12.6	Jirsa–Haken–Nunez Equations
	12.7	An Application to Movement Control
		12.7.1 The Kelso Experiment
		12.7.2 The Sensory-Motor Feedback Loop
		12.7.3 The Field Equation and Projection onto Modes 268
		12.7.4 Some Conclusions

Part IV. Conclusion

13. The Single Neuron 27 13.1 Hodgkin–Huxley Equations 27 13.2 FitzHugh–Nagumo Equations 27 13.3 Some Generalizations of the Hodgkin–Huxley Equations 28 13.4 Dynamical Classes of Neurons 28 13.5 Some Conclusions on Network Models 28	73 76 30 31
14. Conclusion and Outlook	33
15. Solutions to Exercises	37
References	.7
Index	29