Contents

Part I: Basics on Synchronization and Paradigmatic Models

1	Intro	oduction		
	1.1	Synchronization Phenomena in Nature, Physics,		
		and Engineering	3	
	1.2	Goal of the Book	5	
	1.3	Terminological Remarks	7	
	1.4	Bibliographical Remarks	8	
2	Basi	c Models 1	1	
	2.1	Harmonic Oscillator: Amplitude, Frequency		
		and Phase of Oscillations 1	1	
	2.2	Van der Pol Oscillator: Quasi-Harmonic		
		and Relaxation Limit Cycles 12	2	
	2.3	Rössler Oscillator: From Phase-Coherent		
		to Funnel Chaotic Attractors 14	4	
	2.4	Lorenz Oscillator: "Classic" and Intermittent Chaotic		
		Attractors 18	8	
	2.5	Phase Oscillators 2	1	
		2.5.1 First-Order Phase Oscillator (Active Rotator) 22	1	
		2.5.2 Second-Order Phase Oscillator		
		(Pendulum-Like System) 22	2	
		2.5.3 Third-Order Phase Oscillator (Chaotic Rotator) 24	4	
		2.5.4 Discrete-Time Rotator (Circle Map) 24	4	
	2.6	Discrete Map for Spiking–Bursting Neural Activity 28	8	
	2.7	Excitable Systems 29	9	
		2.7.1 Hodgkin–Huxley Model 29	9	
		2.7.2 FitzHugh–Nagumo Model 30	0	
		2.7.3 Luo–Rudy Model 33	3	

3	Sync	chroniz	ation Due to External Periodic Forcing	35
	3.1	Synchi	ronization of Limit-Cycle Oscillator	
		by Ext	ternal Force	36
		3.1.1	Weak Forcing: Phase Description	36
		3.1.2	Synchronization of a van der Pol Oscillator	
			by External Force	37
	3.2	Phase	Synchronization of a Chaotic Rössler Oscillator	
		by Ext	ternal Driving	39
	3.3	Imperf	fect Phase Synchronization	42
	3.4	Transi	tion to the Regime of Chaotic Phase Synchronization:	
		The R	ole of Unstable Periodic Orbits	45
	3.5	Extern	al Phase Synchronization	
		of Cha	otic Intermittent Oscillators	47
		3.5.1	Forced Model Quadratic Map	47
		3.5.2	Forced Lorenz Oscillator	51
	3.6	Synchr	conous Response of Excitable Systems	
		to a Pe	eriodic External Force	52
	3.7	Conclu	isions	53
4	Sync	hroniz	ation of Two Coupled Systems	55
	4.1	Synchr	conization of Regular Systems	55
		4.1.1	Phase Dynamics Approach	56
		4.1.2	Synchronization of Two Coupled van der Pol	
			Öscillators	58
		4.1.3	Synchronization of Coupled Active Rotators	66
	4.2	Synchr	conization of Coupled Chaotic Oscillators	68
		4.2.1	Phase Synchronization of Rössler Oscillators	68
		4.2.2	Synchronization of Coupled Intermittent Oscillators	77
		4.2.3	Oscillatory and Rotatory Synchronization	
			of Chaotic Phase Systems	79
	4.3	Synchr	onization of Coupled Circle Maps	90
		4.3.1	Regular Synchronization	91
		4.3.2	Chaotic Synchronization	93
			· · · · · · · · · · · · · · · · · · ·	00

Part II: Synchronization in Geometrically Regular Ensembles

5	Ense	Ensembles of Phase Oscillators			
	5.1	Gener	al Model and Malkin's Theorem104		
	5.2	Unidir	ectional Coupling106		
	5.3	Synch	conization Phenomena in a Chain		
		of Bid	irectionally Coupled Phase Oscillators		
		5.3.1	Synchronization, Clustering and Multistability		
			in Chains with Linearly Distributed		
			Individual Frequencies114		

		5.3.2 Synchronization Transitions in Chains
		with Randomly Distributed Individual Frequencies 119
	5.4	Influence of Non-Uniform Rotations on the Synchronization 121
	5.5	Phase Oscillators 123
	56	Synchronization Phenomena in a Chain of Coupled
	0.0	Pendulum-Like Equations 125
	5.7	Conclusions
6	Chai	ns of Coupled Limit-Cycle Oscillators
	6.1	Objectives
	6.2	Synchronization Clusters and Multistability at Linear
		Variation of Individual Frequencies Along the Chain130
		6.2.1 Model Equations
		6.2.2 Global Synchronization in an Assembly, Stationary
		Phase Distributions, Synchronization area
		6.2.3 Regimes of Cluster Synchronization
		6.2.4 Multistability
	6.3	Uscillation Death
	0.4	Effects of Nonuniformity of the Frequency Mismatch
		6.4.1 Songitizity of the Structures to Decular
		Nonuniformities 145
		6.4.2 The Effect of Bandom Dispersion of Individual
		Frequencies on Cluster Synchronization
	6.5	Synchronization in a Chain of van der Pol Oscillators
	6.6	Conclusions
-	D	where for the ordination with a David de Davidier
1	Ense	moles of Chaos. Bögeler Oscillators with a Periodic-Doubling
	nou (Symphronization Effects in a Homogeneous Chain
	1.1	of Bössler Oscillators
	7.2	Basic Model of a Nonhomogeneous Chain. Phase
	1.2	and Frequency Definitions, and Criteria
		of Phase Synchronization
	7.3	Phase Synchronization in a Chain with a Linear Distribution
		of Natural Frequencies, Phase-Coherent Rössler Oscillators 154
		7.3.1 Theoretical Study154
		7.3.2 Numerical Results
	7.4	Synchronization in a Chain with Randomly Distributed
		Natural Frequencies
	7.5	Phase Synchronization of Rössler Oscillators
		with the Funnel Attractor

	7.6	Anomalous Collective Behavior of Coupled	
		Chaotic Oscillators	
	7.7	Conclusions	
8	Intermittent-Like Oscillations in Chains		
	of C	oupled Maps	
	8.1	Model of Coupled Intermittent Maps, Phase	
		and Frequency, Synchronization Criteria	
	8.2	Linearly Distributed Control Parameters, Soft Transition	
		to Global Synchronization Regime	
	8.3	Randomly Distributed Control Parameter, Transition	
		to Spatiotemporal Intermittency	
	8.4	Collective Oscillations in a Chain of Spiking Maps	
	8.5	Synchronization in Ensembles of Globally	
		Coupled Bursting Oscillators	
		8.5.1 Mutual Synchronization	
		8.5.2 External Synchronization	
	8.6	Conclusions	
9	Regu	ular and Chaotic Phase Synchronization	
	of C	oupled Circle Maps 187	
	9.1	Common Model for a Chain of Coupled Circle Maps	
	9.2	Synchronization in a Chain of Identical Circle Maps	
		9.2.1 Symmetrically Coupled Maps	
		9.2.2 Effect of Asymmetry of Coupling	
		9.2.3 Synchronization in Lattices of Coupled Maps 197	
	9.3	Ensembles of Coupled Nonidentical Circle Maps	
		and Criteria of Synchronization	
	9.4	Synchronization and Clustering in a Chain of Regular CMs $\dots 200$	
		9.4.1 Linear Distribution of Individual Frequencies	
		9.4.2 Random Distribution of Individual Frequencies 206	
	9.5	Chaotic Phase Synchronization	
	9.6	Conclusions	
10	a		
10	Cont	trolling Phase Synchronization	
	$\frac{10}{10}$	scillatory Networks	
	10.1	General Principles of Automatic Synchronization	
	10.2	Two Coupled Poincaré Systems	
	10.3	Coupled van der Pol and Rossler Oscillators	
	10.4	Two Coupled Rossler Oscillators	
	10.5	Coupled Rossler and Lorenz Oscillators	
	10.6	Principles of Automatic Synchronization	
	10 -	in Networks of Coupled Oscillators	
	10.7	Synchronization of Locally Coupled Regular Oscillators 225	
	10.8	Synchronization of Locally Coupled Chaotic Oscillators 228	

Contents	XIII
Contonio	TTTT

	10.9	Synchronization of Globally Coupled Chaotic Oscillators 230		
	10.10	Conclusions		
11	Chai	ns of Limit-Cycle Oscillators		
	11.1	Introduction and Model		
	11.2	Mechanism of Localized Structure Formation		
	11.3	Dissipative Coupling (Zero "Dispersion")		
		11.3.1 Desynchronization of Front Propagation		
		11.3.2 Localized Synchronization Structures		
		11.3.3 Nonlocal Synchronization		
		in Nonhomogeneous Chains		
		11.3.4 Fully Incoherent (Turbulent-Like) Oscillations		
	11.4	Nonscalar (Dissipative and Conservative) Coupling241		
		11.4.1 Bursting Structures		
		11.4.2 Nonpropagation to Propagation Transition		
		via Intermittency		
		11.4.3 Noise Influence		
	11.5	Conclusions		
12	Chai	ns and Lattices of Excitable Luo–Rudy Systems251		
	12.1	Objectives		
	12.2	Cardiac Model		
	12.3	Methods: Theoretical Basis		
	12.4	Computational Results		
		12.4.1 One-Dimensional Simulations		
		12.4.2 Two-Dimensional Simulations		
	12.5	Conclusions		

Part III: Synchronization in Complex Networks and Influence of Noise

13	Noise-Induced Synchronization in Ensembles of Oscillatory			
	and Excitable Systems			
	13.1	Degrad	ing Effects of Noise: Noise-Induced Phase Slips270	
	13.2	Noise-I	nduced CS and PS in Uncoupled Chaotic Oscillators 273	
		13.2.1	Noise-Induced CS of Identical Chaotic Oscillators 273	
		13.2.2	Noise-Induced PS of Nonidentical Uncoupled	
			Chaotic Systems	
	13.3	Noise-I	Enhanced PS in Weakly Coupled Chaotic Oscillators288	
		13.3.1	Noise-Enhanced PS of a Chaotic Laser	
			Due to Periodic Forcing	
		13.3.2	Noise-Enhanced PS of Two Coupled Rössler	
			Oscillators	

	13.3.3 Noise-Enhanced PS in Arrays of Globally Coupled		
	Rössler Oscillators		
	13.3.4 Experimental Observation of Noise-Enhanced PS 297		
13.4	Noise-Enhanced Synchronization-Like Phenomena		
	in Arrays of Coupled Excitable Cells		
	13.4.1 Phase Synchrony in Chains of Coupled Noisy		
	Excitable Neurons		
	13.4.2 Noise-Enhanced PS of Coupled Excitable Neurons		
	by External Forcing		
	13.4.3 Resonant Pattern Formation in 2D Arrays		
13.5	Conclusions		
14 Netv	works with Complex Topology		
14.1	Introduction		
14.2	Dynamical Equations and Stability Analysis		
14.3	Phase Synchronization in Small-World Networks		
	of Oscillators		
14.4	Synchronization in Scale-Free Networks of Oscillators		
14.5	Mean-Field Analysis of Hierarchical Synchronization		
14.6	Synchronization Properties of Weighted Networks		
14.7	Conclusions		
Glossary	V		
	,		
Acknow	ledgments		
Referen	ces		
Index	Index		