Contents

List of Examples			xv
1	Introduction		
2	An	Overview of Classical Mechanics	5
	2.1	The Lagrangian Formulation	5
	2.2	The Hamiltonian Formulation	8
	2.3	Trajectories in Phase Space	14
	2.4	Variations on the Pendulum	17
	2.5	Coupled Oscillations	26
	2.6	Theory of Small Oscillations	32
	2.7	Poisson Brackets	36
	Prob	olems	40
3	The	Transition to Quantum Mechanics	45
	3.1	Basic Dirac Formulation	45
		3.1.1 The State Vector: Kets, Bras, and Inner Products	46
		3.1.2 Operators \ldots	47
		3.1.3 Matrix Representations	50
	3.2	The Quantum Postulates	52
		3.2.1 Observables, Operators, and Measurement	52
		3.2.2 Probabilities and Expectation Values	54
		3.2.3 Classical Correspondence and the Role of Commutators	55
	3.3	Transformation to the Schrödinger Picture	63
	3.4	Representations in Position Space	67
	3.5	Momentum Space	74
	3.6	Angular Momentum and Quantum Mechanics in Three Dimensions .	79
		3.6.1 Angular Momentum Operators and Commutator Relations	80
		3.6.2 Quantization of Angular Momentum	82
		3.6.3 Orbital Angular Momentum Eigenfunctions	84
		3.6.4 Stationary States for Particle in a Central Potential	93
	Prol	blems	101

	٠	٠
v	1	1
~		-

4	Classical Treatment of Electromagnetic Fields and Radiation	105	
	4.1 Electromagnetic Field Equations and Conservation Laws	105	
	4.1.1 Conservation of Charge	106	
	4.1.2 Conservation of Energy	107	
	4.1.3 Conservation of Momentum	108	
	4.2 Electromagnetic Potentials	109	
	4.2.1 The Coulomb Gauge	110	
	4.2.2 The Lorentz Gauge	113	
	4.3 Field Due to a Changing Polarization	119	
	4.4 Light Scattering from Dielectric Particles	125	
	4.4.1 Integral Formulation of the Scattered Field	127	
	4.4.2 Differential Formulation of the Scattered Field	134	
	Problems	139	
5	Quantum Properties of the Field	143	
	5.1 Canonical Formulation of a Pure Radiation Field	143	
	5.2 Quantization of a Pure Radiation Field	148	
	5.3 Coherent States of the Radiation Field	159	
	5.4 Squeezed States	167	
	Problems	172	
6	Time-Dependent Perturbation Theory, Transition Probabilities, and		
	Scattering	175	
	6.1 The Interaction Picture in Quantum Mechanics	175	
	6.2 Perturbation Expansion of the Time-Evolution Operator	178	
	6.3 Fermi's Golden Rule	179	
	6.3.1 First-Order Transitions	179	
	6.3.2 Extension to Scattering Problems	181	
	6.4 Double-Differential Scattering Cross-Sections	184	
	Problems	195	
7	The Density Operator and Its Role in Quantum Statistics	201	
	7.1 Mixed States and the Density Operator	201	
	7.2 Entropy and Information Content—Determining the Density Operator		
	of a System	203	
	7.3 Perturbation Expansion of the Density Operator	211	
	Problems	218	
8	First-Order Radiation Processes	223	
	8.1 Emission and Absorption of Photons by Atoms and Molecules	224	
	8.1.1 Emission	224	
	8.1.2 Absorption	230	
	8.2 The Origins of Linewidth	236	

	8.3 Prob	8.2.1 Natural Linewidth	$236 \\ 244 \\ 246 \\ 258$
9	Second-Order Processes and the Scattering of Photons 26		
U	9.1	Scattering of Electromagnetic Radiation by a Free Electron	262
		9.1.1 Classical Theory	262
		9.1.2 Quantum Theory	264
	9.2	Scattering of Photons by Atoms	269
		9.2.1 X-ray Scattering	271
		9.2.2 Light Scattering	290
	Prob	olems	302
10	Prir	nciples of Nuclear Magnetic Resonance	307
	10.1	Energy of a Nuclear Spin in an Applied Magnetic Field	307
	10.2	Quantum Mechanical Description of Motion of a Nuclear Spin in a	
		Static Magnetic Field	310
	10.3	Nuclear Spins in Thermal Equilibrium Under a Static Magnetic Field	312
	10.4	Effect of Alternating Transverse Magnetic Field on Spin Dynamics	314
	10.5	The Bloch Equations— T_1 and T_2 Relaxations	323
	10.6	The Principle of Spin Echo	325
	Prob	blems	333
11	The	eory of Photon Counting Statistics	337
	11.1	Statistical Distribution of Photoelectron Counts	337
	11.2	2 Intensity Fluctuations and Correlations	340
		11.2.1 Statistics for Short Counting Time	341
		11.2.2 Statistics for Long Counting Time	355
	11.3	B Photon Correlation Measurements	356
	11.4	Quasi-Elastic Light Scattering	360
	Prob	blems	369
12	2 Dyr	namic Structure Factors	371
	12.1	Dynamic Structure Factors for Simple Fluid Systems	371
		12.1.1 The Self Dynamic Structure Factor	371
		12.1.2 The Full Dynamic Structure Factor	381
	12.2	2 Inelastic Neutron Scattering from a Harmonic Oscillator	385
	12.3	3 General Properties of the Dynamic Structure Factor	392
	Prol	blems	398

•	
XI	v

13 Linear Response Theory	403
13.1 Classical Treatment of Linear Response Theory	403
13.2 Quantum-Mechanical Treatment of Linear Response Theory	409
13.2.1 Response to a Time-Dependent Perturbation	409
13.2.2 Response of a System at Temperature T	413
Problems	419
	110
Some Constants and Conversion Factors	423
Some Constants and Conversion Factors References	423 425
Some Constants and Conversion Factors References Index	423 425 431

List of Examples

Example 2.1	A Particle in a Central Potential	10
Example 2.2	A Relativistic Particle	13
Example 2.3	The Possibility for Chaotic Behavior in the Driven	
-	Pendulum	23
Example 2.4	Continuum Limit of Longitudinal Vibrations in a Linear	
-	Mass Chain	30
Example 2.5	Vibrations of the CO ₂ Molecule	34
Example 2.6	Angular Momentum Conservation and Poisson Brackets	38
Example 3.1	Quantization of the Harmonic Oscillator	58
Example 3.2	Classical Correspondence and the Oscillator	66
Example 3.3	The Harmonic Oscillator Eigenfunctions	71
Example 3.4	Harmonic Oscillator in Momentum Space	78
Example 3.5	The Rigid Rotator and Molecular Rotations	88
Example 3.6	Isotropic Harmonic Oscillator	95
Example 4.1	Radiation Pressure	109
Example 4.2	Hamiltonian for a Charged Particle in an EM Field	114
Example 4.3	Hamiltonian Formulation for EM Field + Charged	
	Particles	115
Example 4.4	Electric Dipole Field and Radiation	121
Example 4.5	Multipole Radiation	124
Example 4.6	Rayleigh-Gans-Debye Scattering	128
Example 4.7	Rayleigh Scattering Limit	131
Example 4.8	Extension to Scattering by Fluctuations	133
Example 4.9	Mie Scattering	135
Example 5.1	Quantization of a Lattice Displacement Field	151
Example 5.2	Phonons in Three-Dimensional Solids	155
Example 5.3	Coherent State Wavefunctions	166
Example 6.1	Thermal Neutron Scattering	187

xv