Foreword xi

Preface xiv

1	Introduction 1	
	1.1 What is system administration?	1
	1.2 What is a system?	2
	1.3 What is administration?	2
	1.4 Studying systems	3
	1.5 What's in a theory?	6
	1.6 How to use the text	10
	1.7 Some notation used	10
2	Science and its methods	13
	2.1 The aim of science	13
	2.2 Causality, superposition and dependency	16
	2.3 Controversies and philosophies of science	17
	2.4 Technology	20
	2.5 Hypotheses	20
	2.6 The science of technology	21
	2.7 Evaluating a system—dependencies	22
	2.8 Abuses of science	22
3	Experiment and observation	25
	3.1 Data plots and time series	26
	3.2 Constancy of environment during measurement	27
	3.3 Experimental design	28
	3.4 Stochastic (random) variables	29
	3.5 Actual values or characteristic values	30
	3.6 Observational errors	30
	3.7 The mean and standard deviation	31
	3.8 Probability distributions and measurement	32
	3.8.1 Scatter and jitter	35
	3.8.2 The 'normal" distribution	35
	3.8.3 Standard error of the mean	36
	3.8.4 Other distributions	37
	3.9 Uncertainly in general formulae	38
	3.10 Fourier analysis and periodic behaviour	39
	3.11 Local averaging procedures	41
	3.12 Reminder	43
4	Simple systems	45
	4.1 The concept of a system	45
	4.2 Data structures and processes	46
	4.3 Representation of variables	47

4.4 The simplest dynamical systems	48
4.5 More complex systems	49
4.6 Freedoms and constraints	50
4.7 Symmetries 51	
4.8 Algorithms, protocols and standard 'methods'	52
4.9 Currencies and value systems	53
4.9.1 Energy and power	53
4.9.2 Money	54
4.9.3 Social currency and the notion of responsibility	54
4.10 Open and closed systems: the environment	56
4.11 Reliable and unreliable systems	58
5 Sets, states and logic	59
5.1 Sets	59
5.2 A system as a set of sets	61
5.3 Addresses and mappings	61
5.4 Chains and states	62
5.5 Configurations and macrostates	64
5.6 Continuum approximation	65
5.7 Theory of computation and machine language	65
5.7.1 Automata or Slate Machines	66
5.7.2 Operators and operands	68
5.7.3 Pattern matching and operational grammars	69
5.7.4 Pathway analysis and distributed algorithms	70
5.8 A policy-defined state	71
6 Diagrammatical representations	73
6.1 Diagrams as systems	73
6.2 The concept of a graph	74
6.3 Connectivity	77
6.4 Centrality: maxima and minima in graphs	77
6.5 Ranking in directed graphs	80
6.6 Applied diagrammatical methods	84
7 System variables	91
7.1 Information systems	91
7.2 Addresses, labels, keys and other resource locators	92
7.3 Continuous relationships	94
7.4 Digital comparison	94
8 Change in systems	97
8.1 Renditions of change	97
8.2 Determinism and predictability	98
8.3 Oscillations and fluctuations	99

	8.4 Rate of change	102
	8.5 Applications of the continuum approximation	103
	8.6 Uncertainty in the continuum approximation	105
9	Information	109
	9.1 What is information?	109
	9.2 Transmission	110
	9.3 Information and control	111
	9.4 Classification and resolution	111
	9.5 Statistical uncertainty and entropy	114
	9.6 Properties of the entropy	118
	9.7 Uncertainty in communication	119
	9.8 A geometrical interpretation of information	123
	9.9 Compressibility and size of information	127
	9.10 Information and state	128
	9.11 Maximum entropy principle	129
	9.12 Fluctuation spectra	133
10) Stability	135
	10.1 Basic notions	135
	10.2 Types of stability	135
	10.3 Constancy	136
	10.4 Convergence of behaviour	137
	10.5 Maxima and minima	138
	10.6 Regions of stability in a graph	139
	10.7 Graph stability under random node removal	141
	10.8 Dynamical equilibria: compromise	142
	10.9 Statistical stability	143
	10.10 Scaling stability	145
	10.11 Maximum entropy distributions	148
	10.12 Eigenstates	148
	10.13 Fixed points of maps	151
	10.14 Metastable alternatives and adaptability	155
	10.15 Final remarks	156
11	Resource networks	159
	11.1 What is a system resource?	159
	11.2 Representation of resources	160
	11.3 Resource currency relationships	161
	11.4 Resource allocation, consumption and conservation	162
	11.5 Where to attach resources?	163
	11.6 Access to resources	165
	11.7 Methods of resource allocation	167

	11.7.1 Logical regions of systems	167
	11.7.2 Using centrality to identify resource bottlenecks	168
	11.8 Directed resources: flow asymmetries	170
12	Task management and services	173
	12.1 Task list scheduling	173
	12.2 Deterministic and non-deterministic schedules	174
	12.3 Human-computer scheduling	176
	12.4 Service provision and policy	176
	12.5 Queue processing	177
	12.6 Models	178
	12.7 The prototype queue MVM/1	179
	12.8 Queue relationships or basic 'laws'	181
	12.9 Expediting tasks with multiple servers M/M/k	186
	12.10 Maximum entropy input events in periodic systems	188
	12.11 Miscellaneous issues in scheduling	189
13	System architectures	191
	13.1 Policy for organization	191
	13.2 Informative and procedural flows	192
	13.3 Structured systems and ad hoc systems	193
	13.4 Dependence policy	193
	13.5 System design strategy	195
	13.6 Event-driven systems and functional systems	200
	13.7 The organization of human resources	201
	13.8 Principle of minimal dependency	202
	13.9 Decision-making within a system	202
	13.9.1 Layered systems: Managers and workers	202
	13.9.2 Efficiency	203
	13.10 Prediction, verification and their limitations	204
	13.11 Graphical methods	205
14	System normalization	207
	14.1 Dependency	207
	14.2 The database model	209
	14.3 Normalized forms	210
15	System integrity	215
	15.1 System administration as communication?	215
	15.2 Extensive or strategic instruction	219
	15.3 Stochastic semi-groups and martingales	223
	15.4 Characterizing probable or average error	224
	15.5 Correcting errors of propagation	226
	15.6 Gaussian continuum approximation formula	228

16	Policy and maintenance	231
	16.1 What is maintenance?	231
	16.2 Average changes in configuration	231
	16.3 The reason for random fluctuations	234
	16.4 Huge fluctuations	235
	16.5 Equivalent configurations and policy	236
	16.6 Policy	237
	16.7 Convergent maintenance	237
	16.8 The maintenance theorem	240
	16.9 Theory of back-up and error correction	241
17	Knowledge, learning and training	249
	17.1 Information and knowledge	250
	17.2 Knowledge as classification	250
	17.3 Bayes1 theorem	252
	17.4 Belief versus truth	254
	17.5 Decisions based on expert knowledge	255
	17.6 Knowledge out of date	259
	17.7 Convergence of the learning process	260
18	Policy transgressions and fault modelling	263
	18.1 Faults and failures	263
	18.2 Deterministic system approximation	265
	18.3 Stochastic system models	269
	18.4 Approximate information flow reliability	273
	18.5 Fault correction by monitoring and instruction	275
	18.6 Policy maintenance architectures	279
	18.7 Diagnostic cause trees	286
	18.8 Probabilistic fault trees	290
	18.8.1 Faults	290
	18.8.2 Conditions and set logic	291
	18.8.3 Construction	293
19	Decision and strategy	295
	19.1 Causal analysis	295
	19.2 Decision-making	296
	19.3 Game theory	297
	19.4 The strategic form of a game	301
	19.5 The extensive form of a game	302
	19.6 Solving zero-sum games	303
	19.7 Dominated strategies	304
	19.8 Nash equilibria	305
	19.9 A security game	309

	19.9.1 Zero-sum approximation	310
	19.9.2 Non-zero sum approximation	313
	19.10 The garbage collection game	315
	19.11 A social engineering game	321
	19.12 Human elements of policy decision	328
	19.13 Coda: extensive versus strategic configuration management	328
20	Conclusions	331
A	Some Boolean formulae	335
	A.1 Conditional probability	335
	A.2 Boolean algebra and logic	336
В	Statistical and scaling properties of time-series data	339
	B.1 Local averaging procedure	339
	B.2 Scaling and self-similarity	343
	B.3 Scaling of continuous functions	344
C	Percolation conditions	347
		• …
	C.1 Random graph condition	347
	C.1 Random graph condition	347
Bił	C. 1 Random graph conditionC. 2 Bipartite form	347 350