Contents

Preface		xiii	
Nota	Notation		
Chap	ter 1 Ba	ckground and scope	
1.1	Introd	uction	1.1
1.2	Stirlin	g types	1.4
1.3	The ba	asic pulse-tube	1.6
1.4	The th	ermo-acoustic cooler	1.10
1.5	Scope		1.10
	$1.5.\hat{1}$	Scope from linear wave theory	1.11
	1.5.2	Scope from the methods of non-linear gas	
		dynamics	1.12
	1.5.3	Scope from extension of Rott's thermo-	
		acoustics	1.13
	1.5.4	Scope from incorporation of regenerator	
		theory	1.13
	1.5.5	Scope from taking account of 'real' gas	
		behaviour	1.14
	1.5.6	Scope from similarity and scaling	1.18
	1.5.7	Scope from optimization	1.18
	1.5.8	Scope from continuously graded regenerator	
		packing	1.20
	1.5.9	Scope from re-acquisition of regenerator	
		heat transfer and flow correlations	1.21
Chap	ter 2 Ide	eal reference cycles	
2.1	Introd	luction	2.1
2.2	Stirlin	Stirling cycle – equivalence of volume variations	
2.3	In search of an ideal cycle for the Gifford pulse-tube		2.7
	2.3.1	Kittel's ideal COP	2.9
	2.3.2	In the footsteps of Gustav Schmidt	2.10
	2.3.3	Specimen ideal gas processes	2.18

Contents.v

Stirling and pulse-tube cryo-coolers

2.4	Coeffic	cient of performance of ideal Gifford cycle	2.22
2.5	Deduc	etions for first-principles pulse-tube design	2.26
		eal Stirling cycle – real gas	
3.1	Backg		3.1
3.2	Role of	of the ideal cycle in the present study	3.1
3.3	Basic	reference cycle	3.2
	3.3.1	Reference cycle with ideal gas	3.2
	3.3.2	'Real' gas	3.5
3.4	Reform	mulation – the complete ideal cycle	3.7
	3.4.1	Ideal gas	3.7
	3.4.2	'Real' gas	3.8
3.5	Heat of	quantities	3.9
			3.9
	3.5.1 3.5.2	Engineering thermodynamics form	3.12
	3.5.3	Application to the ideal gas	3.13
	3.5.4	Application to the 'real' gas	3.14
3.6	Comp	uted results	3.15
3.7		eations for practical design	3.16
Char	stom A. Too	othermal Stirling cycle with van der Waals ga	a
4.1		erion for moving forward	4.1
4.1		_	4.1
4.2		sothermal' cycle generalized	4.1
	4.2.1 4.2.2	Simplifying assumptions (Integral) formulation adapted to your day.	
	4.2.2	'Integral' formulation adapted to van der V	
	422	gas	4.2
	4.2.3	Equation of state in terms of simulation	1.0
4.2	C' 1	variables	4.6
4.3		ated gas processes	4.9
4.4		cations for practical cooler design – update	4.11
4.5	Stand	ard solution of cubic equation	4.11
Chap	oter 5 A	first model of electro-magnetic dynamics	
5.1	Conte	xt	5.1
5.2	Mecha	anical equations of motion	5.2
5.3		etization and normalization	5.4
5.4	The el	lectro-magnetic circuit	5.5
	5.4.1	Instantaneous solenoid force	5.5
	5.4.2	Determination of operating point	5.7

α .	4		٠.
Co	nte	eni	IS

5.5	Gas process model	5.9
	5.5.1 Energy equation for variable-volume spaces	5.9
	5.5.2 Gas law	5.11
	5.5.3 Mass conservation	5.12
	5.5.4 Evaluation of working-space <i>NTU</i>	5.12
5.6	Regenerator pressure drop	5.13
	5.6.1 Distributed pressure drop	5.14
	5.6.2 Pressure drop based on mean flowrate	5.15
5.7	Regenerator transient thermal response	5.16
5.8	Preparation for solution	5.17
5.9	Specimen simulated performance	5.19
5.10	Deductions from computed performance under rated	
	operating conditions	5.25
5.11	Real gas effects	5.27
5.12	Implications for practical cooler design – update	5.29
Chapt	er 6 Towards a cook-book method of thermodynamic	design
6.1	Background	6.1
6.2	The inevitability of scaling	6.1
6.3	Scaling principles revisited	6.2
6.4	Improvements in or relating to regenerator scaling	6.3
6.5	Similarity of working-space NTU	6.5
6.6	Scaling and experiment	6.10
6.7	Scaling in practice	6.12
6.8	Some realities	6.12
6.9	Similarity and the Stirling prime mover	6.18
6.10	Extension to the regenerative cryo-cooler	6.21
6.11	Insights from unconventional test procedures	6.23
6.12	Zen and the art of scaling	6.26
Chapt	ter 7 The Gifford low-frequency pulse-tube	
7.1	Background	7.1
7.2	Equivalent pulse-tube	7.2
7.3	Particle trajectories	7.2
7.4	Integration grid	7.5
7.5	Temperature solutions	7.8
7.6	Specimen temperature solutions	7.11
7.7	Conclusions	7.13

Chapt	er 8 Cla	assic regenerator problem – real gas	
8.1	Introduction		
8.2	Fluid particle paths		
	8.2.1	Mass of ideal gas contained between entry at	
		$T_{\rm E}$ and a plane at fractional distance $x/L_{\rm r}$	
		from entry	8.2
	8.2.2	Determination of fractional linear distance, λ	
		$(=x/L_{\rm r})$, occupied by specified	
		fraction, $v = m_{\lambda}/M_{\rm r}$, of regenerator fluid	
		content – ideal gas case	8.3
	8.2.3	Determination of fractional linear distance, λ	
		$(=x/L_{\rm r})$, occupied by specified fraction,	
		$m_{\lambda}/M_{\rm r}$, of regenerator fluid content – any	
		working fluid in which density, ρ , is a	
		function of pressure, p, and temperature,	
		$T_{\rm g}, { m viz.} \ ho = ho \left(p, T_{ m g} \right)$	8.5
8.3	Tempe	erature solutions	8.7
	8.3.1	Aspects of formulation common to ideal	
		and real gas	8.7
	8.3.2	Enthalpy change – van der Waals gas	8.8
8.4		nen temperature solutions	8.10
8.5		erature dependence of matrix material	8.12
	0 771	12	
		e ultimate regenerator?	0.1
9.1	Conte		9.1
9.2		a for grading	9.2
9.3		e specification	9.5
9.4	_	erator solutions revisited	9.9
9.5	-	counterflow and graded hydraulic radius	9.12
9.6		nd graded free-flow area	9.15
9.7	In con	clusion	9.19
Chapt	ter 10 A	question of streaming	
10.1	Backg	round	10.1
10.2		tic theory revisited	10.1
	10.2.1	Linear waves; duct of finite length; graduation	
		of temperature	10.2
	10.2.2	-	10.5
10.3	Strean		10.8

	Co	ontents
10.4	The boundary layer	10.8
10.5	Conservation equations of the boundary layer	10.10
10.6	'Acoustic' streaming	10.15
10.7	Streaming and finite-particle displacement –	
	a Lagrange formulation	10.18
	10.7.1 Gas process model	10.18
	10.7.2 Mass conservation	10.18
	10.7.3 Momentum conservation	10.19
	10.7.4 Energy conservation	10.20
	10.7.5 Preparation for solution and specimen results	10.20
	10.7.6 Some reservations	10.23
10.8	The next step	10.24
Chapte	r 11 Driving function for pulse-tube events – a gas dynamics option	
11.1	Status quo	11.1
11.2	A role for unsteady gas dynamics	11.3
11.3	Temperature-determined gas dynamics	11.5
11.4	Implementation	11.5
11.5	Application to the cryo-cooler	11.8
11.6	Interim implications for design	11.15
11.7	The equations of temperature-determined gas	
	dynamics	11.15
11.8	Extension to real gas behaviour	11.26
11.9	Approximate wave traverse times	11.27
11.10	Review	11.28
Chapte	er 12 Bridging the gap	
12.1	Non-linear versus linear – or both	12.1
12.2	Linear waves	12.1
	12.2.1 Assumptions	12.2
	12.2.2 The wave equation	12.2
12.3	The building blocks of linear wave algebra	12.4
12.4	Linear waves and the Method of Characteristics	12.6
12.5	Unrestricted number of wave reflection sites	12.16
12.6	Applicability to the pulse-tube	12.21
	12.6.1 Optional transformation to 'pseudo-	
	uniform' acoustic speed c_0	12.21

Stirling and pulse-tube cryo-coolers

	12.6.2	Geometry of equivalent one-dimensional	
		duct in terms of that of the gauze	12.22
	12.6.3	Parameters of operation	12.22
12.7	Furthe	r assumptions	12.23
Chapt	ter 13 A	missing link	
13.1		Stirling to pulse-tube	13.1
13.2		e displacement under linear waves	13.1
13.3		e motion and the MoC	13.4
13.4	Integra	ation grid for the pulse-tube regenerator	13.10
	13.4.1	Redevelopment of the wave equation	13.10
	13.4.2	Construction of the integration grid	13.11
13.5	Acoust	tic coordinates	13.14
13.6	Résum	é	13.18
Chapt		olytropic gas dynamics – and other potential	
1 1 1		sources	1.4.1
14.1	Backgr		14.1
14.2	_	o's derivation	14.1
14.3		opic gas dynamics	14.6
		Acoustic speed	14.6
	14.3.2	* *	14.7
	14.3.3	1 7 1	14.8
14.4		ifford pulse-tube – a non-conformist view	14.10
	14.4.1	Equivalent piston motion	14.10
	14.4.2	Tentative application of the MoC	14.11
	14.4.3	Linear wave analysis	14.12
14.5	Closur	e	14.15
_		he pulse-tube cooler with 'inertance duct'	
15.1	Conte		15.1
15.2		wave mechanics and flow friction	15.2
15.3		sion to arbitrary number of duct elements	15.5
15.4		putational consideration	15.6
15.5		m isothermal duct with friction	15.7
15.6		sion to distributed temperature and unlimited	
		er of duct elements	15.7
15.7	Heat e	exchange intensity (unlimited NTU)	15.16
15.8	Linear	versus non-linear	15.20

	Co	ontents
15.9 15.10	Matters arising Extension of ideal cycle to orifice and inertance line	15.28
13.10	variants	15.28
Chapte	r 16 Any other business	
16.1	Status quo	16.1
16.2	A preliminary appraisal of the TRW 3505 pulse-tube	16.2
16.3	Example of data reduction	16.2
16.4	The Gifford pulse-tube – a reappraisal	16.8
16.5	In conclusion	16.10
Append	lix A Conditions for equivalence of volume variations	
A .1	Kinematics	A.1
A.2	Additional unswept volume	A.4
Append	lix B The Ergun equation – and beyond	B.1
Append	lix C Modified Newton-Raphson method	C.1
Refere	nces	Refs.1