Contents

Chapter IV. Stiff Problems – One-Step Methods

17.1	Examples of Stiff Equations	2
	Chemical Reaction Systems	3
	Electrical Circuits	4
	Diffusion	6
	A "Stiff" Beam	8
	High Oscillations	11
	Exercises	11
IV.2	Stability Analysis for Explicit RK Methods	15
	Stability Analysis for Euler's Method	15
	Explicit Runge-Kutta Methods	16
	Extrapolation Methods	18
	Analysis of the Examples of IV.1	18
	Automatic Stiffness Detection	21
	Step-Control Stability	24
	A PI Step Size Control	28
	Stabilized Explicit Runge-Kutta Methods	31
	Exercises	37
IV.3	Stability Function of Implicit RK-Methods	40
	The Stability Function	40
	A-Stability	42
	L -Stability and $A(\alpha)$ -Stability	44
	Numerical Results	46
	Stability Functions of Order $\geq s$	47
	Padé Approximations to the Exponential Function	48
	Exercises	49
IV.4	Order Stars	
1 4.4		51
	Introduction	51
	Order and Stability for Rational Approximations	56
	Comparing Stability Domains	58
	Comparing Stability Domains	58
	Rational Approximations with Real Poles	61
	The Real-Pole Sandwich	62
	Multiple Real-Pole Approximations	67
	Exercises	70
IV.5	Construction of Implicit Runge-Kutta Methods	71
	Gauss Methods	71
	Radau IA and Radau IIA Methods	72

	•	
X	Contents	

	Lobatto IIIA, IIIB and IIIC Methods	75
	The W-Transformation	77 83
	Stability Function	84
	Positive Functions	86
	Exercises	89
IV.6	Diagonally Implicit RK Methods	91
	Order Conditions	91
	Stiffly Accurate SDIRK Methods	92 96
	Multiple Real-Pole Approximations with $R(\infty)=0$	98
	Choice of Method	99
	Exercises	100
IV.7	Rosenbrock-Type Methods	102
	Derivation of the Method	102
	Order Conditions	104 108
	Construction of Methods of Order 4	108
	Higher Order Methods	111
	Implementation of Rosenbrock-Type Methods	111
	The "Hump"	113 114
	Exercises	117
IV.8	Implementation of Implicit Runge-Kutta Methods	118
11.0	Reformulation of the Nonlinear System	118
	Simplified Newton Iterations	119
	The Linear System	121
	Step Size Selection	123 127
	An SDIRK-Code	128
	SIRK-Methods	128
	Exercises	130
IV.9	Extrapolation Methods	131
	Extrapolation of Symmetric Methods	131
	Smoothing	133 134
	Implicit and Linearly Implicit Euler Method	138
	Implementation	139
	Exercises	142
IV.1	0 Numerical Experiments	143
	The Codes Used	143 144
	Twelve Test Problems	152
	Partitioning and Projection Methods	160
	Exercises	165
IV.1	1 Contractivity for Linear Problems	167
	Euclidean Norms (Theorem of von Neumann)	168
	Error Growth Function for Linear Problems	169
	Small Nonlinear Perturbations	172 175
	Study of the Threshold Factor	176
	•	

	Contents	XI		
	Absolutely Monotonic Functions	178 179		
1V.12	$ \begin{array}{c} \textbf{B-Stability and Contractivity}. \\ \textbf{One-Sided Lipschitz Condition} \\ B\text{-Stability and Algebraic Stability} \\ \textbf{Some Algebraically Stable IRK Methods} \\ AN\text{-Stability} \\ \textbf{Reducible Runge-Kutta Methods} \\ \textbf{The Equivalence Theorem for } S\text{-Irreducible Methods} \\ \textbf{Error Growth Function} \\ \textbf{Computation of } \varphi_B(x) \\ \textbf{Exercises} \\ \end{array} $	180 180 181 183 184 187 188 193 195 199		
	Positive Quadrature Formulas and B-Stable RK-Methods Quadrature Formulas and Related Continued Fractions Number of Positive Weights Characterization of Positive Quadrature Formulas Necessary Conditions for Algebraic Stability Characterization of Algebraically Stable Methods The "Equivalence" of A- and B-Stability Exercises	201 201 203 205 206 209 211 213		
IV.14	Existence and Uniqueness of IRK Solutions Existence A Counterexample Influence of Perturbations and Uniqueness Computation of $\alpha_0(A^{-1})$ Methods with Singular A Lobatto IIIC Methods Exercises	215 215 217 218 220 222 223 223		
IV.15	B-Convergence The Order Reduction Phenomenon The Local Error Error Propagation B-Convergence for Variable Step Sizes B-Convergence Implies Algebraic Stability The Trapezoidal Rule Order Reduction for Rosenbrock Methods Exercises	225 225 228 229 230 232 234 236 237		
Chapter V. Multistep Methods for Stiff Problems				
V.1	Stability of Multistep Methods The Stability Region Adams Methods Predictor-Corrector Schemes Nyström Methods BDF The Second Dahlquist Barrier Exercises	240 240 242 244 245 246 247 249		
V.2	"Nearly" A-Stable Multistep Methods $A(\alpha)$ -Stability and Stiff Stability	250 250 251 253		

XII	Contents

	A Disc Theorem	254
	Accuracy Barriers for Linear Multistep Methods	254
	Exercises	259
V.3	Generalized Multistep Methods	261
	Second Derivative Multistep Methods of Enright	261
	Second Derivative BDF Methods	265
	Blended Multistep Methods	266
	Extended Multistep Methods of Cash	267
	Multistep Collocation Methods	270
	Methods of "Radau" Type	273 275
	Exercises	
V.4	Order Stars on Riemann Surfaces	279
	Riemann Surfaces	279
	Poles Representing Numerical Work	283 284
	Order and Order Stars	286
	The "Daniel and Moore Conjecture"	288
	General Linear Methods	290
	Dual Order Stars	295
	Exercises	297
V.5	Experiments with Multistep Codes	300
1.0	The Codes Used	300
	Exercises	304
V.6	One-Leg Methods and G-Stability	305
1.0	One-Leg (Multistep) Methods	305
	Existence and Uniqueness	306
	G-Stability	307
	An Algebraic Criterion	309
	The Equivalence of A -Stability and G -Stability	
	A Criterion for Positive Functions	313
	Error Bounds for One-Leg Methods	
	Convergence of A-Stable Multistep Methods	317
	Exercises	
V.7	Convergence for Linear Problems	321 321
	Difference Equations for the Global Error	341 323
	Some Applications of the Kreiss Matrix Theorem	326
	Global Error for Prothero and Robinson Problem	
	Convergence for Linear Systems with Constant Coefficients	
	Matrix Valued Theorem of von Neumann	330
	Discrete Variation of Constants Formula	332
	Exercises	337
V.8	Convergence for Nonlinear Problems	339
	Problems Satisfying a One-Sided Lipschitz Condition	339
	Multiplier Technique	342
	Multipliers and Nonlinearities	346
	Discrete Variation of Constants and Perturbations	
	Convergence for Nonlinear Parabolic Problems	
	Exercises	
V.9	Algebraic Stability of General Linear Methods	
	G-Stability	356

	Contents	XIII
	Algebraic Stability	357 359 362 363 365 366 368 370
Cha	pter VI. Singular Perturbation Problems	
and	Index 1 Problems	
VI.1	Solving Index 1 Problems Asymptotic Solution of van der Pol's Equation The ε -Embedding Method for Problems of Index 1 State Space Form Method A Transistor Amplifier Problems of the Form $Mu' = \varphi(u)$ Convergence of Runge-Kutta Methods Exercises	372 372 374 375 376 378 380 381
VI.2	Multistep Methods	382 382 383 387
VI.3	Epsilon Expansions for Exact and RK Solutions Expansion of the Smooth Solution Expansions with Boundary Layer Terms Estimation of the Remainder Expansion of the Runge-Kutta Solution Convergence of RK-Methods for Differential-Algebraic Systems Existence and Uniqueness of the Runge-Kutta Solution Influence of Perturbations Estimation of the Remainder in the Numerical Solution Numerical Confirmation Perturbed Initial Values Exercises	388 389 391 392 394 397 398 399 403 405 406
VI.4	Rosenbrock Methods Definition of the Method Derivatives of the Exact Solution Trees and Elementary Differentials Taylor Expansion of the Exact Solution Taylor Expansion of the Numerical Solution Order Conditions Convergence Stiffly Accurate Rosenbrock Methods Construction of RODAS, a Stiffly Accurate Embedded Method. Inconsistent Initial Values Exercises	411 412 415 416 418 420 422
VI.5	Extrapolation Methods Linearly Implicit Euler Discretization Perturbed Asymptotic Expansion Order Tableau	426 428

XIX	7	C_0	ní	en	te

VI.6	Error Expansion for Singular Perturbation Problems Dense Output Exercises Quasilinear Problems Example: Moving Finite Elements Problems of Index One Numerical Treatment of $C(y)y' = f(y)$ Extrapolation Methods Exercises	433 438 441 442 442 445 446 447 448
C.		
	pter VII. Differential-Algebraic Equations	
of H	igher Index	
VII.1	The Index and Various Examples Linear Equations with Constant Coefficients Differentiation Index Differential Equations on Manifolds The Perturbation Index Control Problems Mechanical Systems	452 452 454 457 459 461 463
	Exercises	465
VII.2	Index Reduction Methods Index Reduction by Differentiation Stabilization by Projection Differential Equations with Invariants Methods Based on Local State Space Forms Overdetermined Differential-Algebraic Equations Unstructured Higher Index Problems Exercises	468 468 470 472 474 477 478 480
VII 3	Multistep Methods for Index 2 DAE	481
VII.S	Existence and Uniqueness of Numerical Solution Influence of Perturbations The Local Error Convergence for BDF General Multistep Methods Solution of the Nonlinear System by Simplified Newton Exercises	482 484 485 486 489 490 491
VII.4	Runge-Kutta Methods for Index 2 DAE	492
	The Nonlinear System Estimation of the Local Error Convergence for the y-Component Convergence for the z-Component Collocation Methods Superconvergence of Collocation Methods Projected Runge-Kutta Methods Summary of Convergence Results Exercises	492 494 496 497 498 500 502 504 505
VII	Order Conditions for Index 2 DAE	506
V 11.5	Derivatives of the Exact Solution Trees and Elementary Differentials Taylor Expansion of the Exact Solution	506 506 507 508

	Contents	XV
Derivatives of the Numerical Solution		510 512
Simplifying Assumptions Projected Runge-Kutta Methods		514 513
VII.6 Half-Explicit Methods for Index 2 Systems		519
Half-Explicit Runge-Kutta Methods Extrapolation Methods		
β -Blocked Multistep Methods Exercises		529
VII.7 Computation of Multibody Mechanisms Description of the Model Fortran Subroutines Computation of Consistent Initial Values Numerical Computations A Stiff Mechanical System Exercises		530 531 531 531 54
VII.8 Symplectic Methods for Constrained Hamilton		
Properties of the Exact Flow First Order Symplectic Method SHAKE and RATTLE The Lobatto IIIA-IIIB Pair Composition Methods Backward Error Analysis (for ODEs) Backward Error Analysis on Manifolds Exercises		54 . 54 . 55 . 55 . 55 . 55
Appendix. Fortran Codes Driver for the Code RADAU5 Subroutine RADAU5 Subroutine RADAUP Subroutine RODAS Subroutine SEULEX Problems with Special Structure Use of SOLOUT and of Dense Output		. 56 56 57 . 57 . 57
Bibliography		. 57
Symbol Index		. 60
Subject Index		. 60