Contents

.

1.	Intr	oduction	1
	1.1	The Subject of Laser Physics at Relativistic Intensities	1
	1.2	A Review of Basic Studies of Laser Physics	
		at Relativistic Intensities	5
		1.2.1 Nonlinear Propagation and Self-Focusing	
		of Light in Matter	5
		1.2.2 Charged Particle Motions in Electromagnetic Fields	6
		1.2.3 Nonlinear Electromagnetic Waves in Plasmas	7
		1.2.4 Scattering of Intense Electromagnetic Radiation	
		in Plasmas	7
		1.2.5 Interactions of Intense, Ultrashort, Laser Pulses	_
		with Underdense Plasmas	8
		1.2.6 Interactions of Relativistically Intense Laser Radiation	
		with Overdense Plasmas	11
2.	Fun	damentals of Cold Plasma Electrodynamics	13
	2.1	Basic Cold Plasma Electrodynamics Equations	
		in Relativistic Notation	13
	2.2	Basic Equations in 3-D Form	
	2.3	Potential and Vortex Components of Momentum	19
	2.4	Electron Fluid Dynamics with Inertially Frozen Ions	20
		2.4.1 Canonical Variables	21
		2.4.2 Examples of Exact Solutions	22
2	Rol	ativistically Intonso Electromagnotic Wayos in Plasmas	97
J.	3 1	The Akhiezer-Polovin Problem	$\frac{21}{27}$
	3.2	Linearly Polarized Plane Electromagnetic Waves	29
	0.2	3.2.1 Self-Modulation at Relativistic Intensities	$\frac{20}{29}$
		3.2.2 Asymptotic Theory in the High-Frequency Limit	31
		3.2.3 Quasi-Relativistic Limit	35
	3.3	Circularly Polarized Plane Electromagnetic Waves	37
	0.0	cheddary i charled i fane Licenonagnetic (faveb	01

X Contents

Contents	XI
Contonio	~ * * *

4.	Inst	abilities of Circularly Polarized		
	Pla	ne Electromagnetic Waves in Plasmas	39	
	4.1	Equations of Circularly Polarized Wave Instability in Plasmas	40	
	4.2	Slab Geometry Instability Equations	42	
		4.2.1 Conserved Circular Polarization Approximation	42	
		4.2.2 Instability Growth Rates in Slab Geometry	43	
	4.3	3-D Instability Growth Rates	47	
	4.4	Conclusions	53	
5.	Inst	abilities of Linearly Polarized		
	Pla	ne Electromagnetic Waves in Plasmas	55	
	$5.1 \\ 5.2$	3-D Instability Equations Scattering of Linearly Polarized Electromagnetic Waves	55	
	-	in 1-D Geometry	58	
		5.2.1 One-Dimensional Scattering Equations	58	
		5.2.2 Flopagation of Ferturbations Faranei	50	
	E 9	Sectoring Diagrams for 2 D Instability	63	
	0.0 5.4	Conclusions	68 68	
	0.4	Conclusions	00	
6.	Mo	dels of Nonlinear Propagation		
		Relativistically Intense Ultrasnort	79	
	Las	er Pulses in Plasmas	13 74	
	0.1	The Physical Model	74 75	
	0.2	Derivation of the Basic Model Equations	10 79	0
	6.3 C 4	Envelope Approximation	70 70	9.
	0.4	Long Beam and Large Aperture Limits	19	
		6.4.1 Long Beam Limit	8U 91	
	с г	5.4.2 Large Laser Pulse Aperture Limit	01	
	0.0	f Deletizietically Interes Lesen Dediction		
		or Relativistically intense Laser Radiation	ຈາ	
	<i>c c</i>	In Cold Underdense Plasmas	02	
	0.0	Laser Radiation Stimulated Scattering by Flashons	96	
	c 7	and Inird-Harmonics Generation	80 80	
	6.7	Conclusions	69	
7.	Inte	ense Laser Pulse Solitons in Plasmas	91	
	7.1	Soliton Equations and Numerical Solutions	91	
	7.2	One-Dimensional Laser Pulse Solitons		
		in the WKB Approximation	93 ·	
	7.3	Conclusions	96	
				10
8.	\mathbf{Rel}	ativistic and Charge-Displacement Self-Channeling	- -	
	of I	ntense Ultrashort Laser Pulses in Plasmas	97	
	8.1	Stationary Self-Localized Modes of Beam Propagation	97	

		8.1.1 Slab Geometry Solitons
		8.1.2 Axially Symmetrical Eigenmodes:
		Relativistic and Charge-Displacement Self-Channeling
		Critical Power
	8.2	General Sufficient Condition for Relativistic
		and Charge-Displacement Self-Channeling 103
	8.3	Propagation of Axially Symmetrical Laser Beams
		in Cold Underdense Plasmas 104
		8.3.1 Problem Formulation
		in Terms of Propagation Distance
		8.3.2 Relativistic and Charge-Displacement Self-Channeling 106
	8.4	Filamentation Stability of Relativistic
		and Charge-Displacement Self-Channeling 112
		8.4.1 Eigenmode Stability to Filamentation 114
		8.4.2 Stability of Initially Hyper-Gaussian
		and Gaussian Beams
		in Initially Homogeneous Plasmas 115
		8.4.3 Filamentation Stability
		in Preformed Plasma Columns 122
	8.5	Observation of Relativistic
		and Charge-Displacement Self-Channeling
		of Intense Subpicosecond Ultraviolet (248 nm) Radiation
		in Plasmas 125
	8.6	Conclusions
_	Dvi	namics of Relativistic
	and	Charge-Displacement Self-Channeling
	in 7	Fine and 2D Space \dots 135
	9.1	Superintense Two-Dimensional Solitons,
		Self-Modulation, and Spectral Broadening
		9.1.1 Laser Beam Stabilization and the Formation
		of a Two-Dimensional Solitary Wave 135
		9.1.2 Giant Broadening of Laser Pulse Spectra 137
	9.2	Nonlinear Wave Equation Model 139
	0	9.2.1 A Comparison of Simulations Based
		on the Modified Nonlinear Schroedinger Equation
		and on the Nonlinear Wave Equation
		9.2.2 Laser Pulse Self-Modulation
		in a Self-Channeling Regime
	9.3	Conclusions
_	9.3	Conclusions 147

in Multiple-Stage Ionized Matter	149
10.1 General Description of Ionizational Defocusing	150

XII Contents

10.2	Simulations of Ionizational Defocusing	
	of Laser Pulses in Gases	153
10.3	Experimental Demonstration	
	of Ionization-Induced Defocusing	
	of Short-Pulse, High-Power Lasers in Gases	158
10.4	Spectral Blueshifting	
	of Short-Pulse, High-Power Lasers in Gases	160
10.5	Thomas–Fermi Atom in an Intense Field	161
. Exp	eriments on Laser–Matter Interaction	
in tl	ne Relativistic Regime	165
11.1	Enhancement of Self-Channeling Distance	
	by an Exterior Supply of Energy	166
11.2	X-Ray Laser	170
11.3	Harmonic Excitation	178
	11.3.1 High-Order Harmonic Generation in Gases	178
	11.3.2 Harmonic Generation in Plasmas	180
11.4	Generation of Intense Electrostatic Fields	
	and Acceleration of Electrons	182
11.5	Generation of Superintense Magnetic Fields	188
11.6	Interaction of Free Electrons	
	with Ultrashort Laser Pulses	190
11.7	Fast Igniter Scheme	192
11.8	Pulse Generator of Neutrons	199
_		
eferen	ces	201
1		017
aex	•••••••••••••••••••••••••••••••••••••••	217