CONTENTS

V. ELECTRIC POLARIZATION AND OPTICAL DISPERSION

CONTENTS

I. INTRODUCTION

1.	Conduction of electricity in electrolytes	•	•	•		•	1
2.	Conduction of electricity in gases			•			2
	Thomson's determination of the specific charge						
4.	Determination of the elementary charge			•			8
5.	The Zeeman effect						9

II. ATOMISTIC FOUNDATION OF MAXWELL'S THEORY

1.	Formulation of the problem	13
2.	Averaging over physically infinitesimal regions	15
3.	Identification of the electromagnetic field averages	16
4.	The average charge density	17
5.	The average current density	22
6.	Conclusion	27

III. DYNAMICAL PROPERTIES OF SYSTEMS OF CHARGED PARTICLES

1.	Systems of charged particles	28
	The Lagrangian and Hamiltonian	
	System in slowly varying external field	
	Larmor's theorem	
	Magnetic moment and angular momentum	
	The gyromagnetic effects	
	Maxwell's considerations concerning the inertia of electric	
	currents	41

IV. MAGNETIC PROPERTIES OF MATTER

1.	Intrinsic and induced magnetic moment; diamagnetism.											
2.	The paradox of the classical theory of magnetism			4 6								
3.	Paramagnetism			47								
4.	Ferromagnetism.			52								
	The internal field											

.

-		
	Electric polarization in constant fields	
2.	Elementary theory of dispersion	
3.	Anomalous dispersion and absorption	
4.	Radiation damping and extinction coefficient 71	
5.	Scattering of light	
6.	Critical opalescence	

VI. RIGOROUS THEORY OF DISPERSION

1.	The	average	e po	lari	zatio	n	•	•				•									94
2.	The	average	e po	lari	zabili	\mathbf{ty}	•	•	•				•	•					•	•	101
		transve																			
4.	The	extinct	ion	the	\mathbf{orem}	•	•	•		•	•			•		•		•			105
5.	The	extinct	ion	coe	fficier	\mathbf{t}	•	•	•	•	•	•	•		•	•	•		•	•	108
APPEN	DIX		•		• •	.•	•	•				•	•		•				•		111
INDEX	Σ	• • •				•	•			•	•		•	•							116

Note. Formulae are numbered separately in each chapter. Formula (33) of Chapter V, say, is referred to as (33) in Chapter V, and as (V, 33) in any other chapter.

•

.