Contents

Preface							
1	I Introduction						
2	Bolt	Boltzmann Equation					
	2.1	Velocity distribution function and macroscopic variables	5				
	2.2	Boltzmann equation	7				
	2.3	Conservation equations	8				
	2.4	Maxwell distribution (Equilibrium distribution)	9				
	2.5	Mean free path	9				
	2.6	Boundary condition	10				
		2.6.1 Simple boundary	10				
		2.6.2 Interface	11				
	2.7	H theorem	13				
	2.8	Model equation	14				
	2.9	Nondimensional expressions I	15				
	2.10	Nondimensional expressions II	19				
		Linearized Boltzmann equation	24				
	2.12	Boltzmann equation in the cylindrical and spherical coordinate					
		systems	26				
3	Line	Linear Theory – Small Reynolds Numbers 2					
	3.1	Problem	27				
	3.2	Grad-Hilbert solution and fluid-dynamic-type equations	28				
	3.3	Stress tensor and heat-flow vector of the Grad–Hilbert solution .	32				
	3.4	Analysis of the Knudsen layer	35				
	3.5	Slip condition and Knudsen-layer correction	44				
		3.5.1 On a simple solid boundary	44				
		3.5.2 On an interface of a gas and its condensed phase with					
		evaporation or condensation	49				
	3.6	Determination of macroscopic variables	52				
	3.7	Discontinuity of the velocity distribution function and S layer	53				
	3.8	Force and mass and energy transfers on a closed body	57				
	3.9	Viscosity and thermal conductivity	59				

	3.10	Summ	ary of the asymptotic theory		60
			cations		60
			Thermal creep flow and thermal transpiration		60
			Thermal-stress slip flow		63
			Nonlinear thermal-stress flow		64
		3.11.4	Thermal edge flow		65
			Thermophoresis		70
			Knudsen compressor		72
			Negative-temperature-gradient phenomenon		81
4	Wea	akly N	onlinear Theory – Finite Reynolds Numbers		85
	4.1	Proble	em		86
	4.2	S solut	tion $\dots \dots \dots$		86
	4.3	Fluid-	dynamic-type equations		92
	4.4		en-layer analysis		97
	4.5	Slip co	ondition and Knudsen layer		101
		4.5.1	On a simple solid boundary		102
		4.5.2	On an interface of a gas and its condensed phase		103
	4.6	Deterr	nination of macroscopic variables		104
	4.7	Rarefa	action effect		106
	4.8	Force	and mass and energy transfers on a closed body		106
	4.9	Summ	ary of the asymptotic theory and a comment on		
		a time	-dependent problem		109
	4.10	Applic	eations	•	113
		4.10.1	Half-space problem of evaporation and condensation		113
		4.10.2	Evaporation and condensation around a cylindrical		
			or spherical condensed phase		116
		4.10.3	The difference of the temperature field for the S expansion	1	
			and for the incompressible Navier–Stokes set in		
			a time-dependent problem	•	119
5	Non	linear	Theory I – Finite Temperature Variations		
			Effect		123
	5.1	Proble	em		123
	5.2	SB sol	ution		125
	5.3	Fluid-	dynamic-type equations		135
	5.4	Knuds	en layer and slip condition		137
	5.5	Deterr	nination of macroscopic variables		146
	5.6		effect: Incompleteness of the system of the classical		
			namics		148
		5.6.1	Nonlinear thermal-stress flow and inappropriateness		
			of the heat-conduction equation		148
		5.6.2	Ambiguity in the continuum world		151
		5.6.3	Reflection on the Navier–Stokes set of equations		152
		5.6.4	Illustrative examples		153
		5.6.5	Supplementary discussion		157

vi

	5.7	Half-space problem of evaporation and condensation	160
6		nlinear Theory II – Flow with a Finite Mach Number und a Simple Boundary 1	167
		Problem	
	$\begin{array}{c} 6.1 \\ 6.2 \end{array}$	Hilbert solution	
	6.2	Viscous boundary-layer solution	
	6.4	Knudsen-layer solution and slip condition	
	6.5	Connection of Hilbert and viscous boundary-layer solutions	
	6.6	· ·	192
	6.7	Discussions	
7	Nor	nlinear Theory III – Finite Speed of Evaporation	
	and	Condensation 2	203
	7.1	Problem	203
	7.2	Hilbert solution	204
	7.3	Knudsen layer	206
	7.4		209
	7.5	System of equations and boundary conditions in the continuum	
			213
	7.6		216
	7.7	Boundary-condition functions $h_1(M_n), h_2(M_n), F_s(M_n, \overline{M}_t, T/T_w),$	200
	7 0	and $F_b(M_n, \overline{M}_t, T/T_w)$	
	7.8	7.8.1 Two-surface problem of evaporation and condensation	
		7.8.2 Evaporating flow from a spherical condensed phase into a	220
		· · · ·	226
		7.8.3 Evaporating flow from a cylindrical condensed phase into	220
			231
8	Bifu	rcation of Cylindrical Couette Flow with Evaporation	
		-	35
	8.1	Problem	235
	8.2	Solution type I	237
		8.2.1 Analysis	237
		8.2.2 Solution	242
	8.3	Solution type II	244
	8.4	Bifurcation diagram and transition solution	250
	8.5	Discussions for the other parameter range	253
	8.6	Concluding remark and supplementary comment	253
A		1 7 1	57
	A.1	Formal derivation of the Boltzmann equation from the	
		1	257
		Solution of integral equation $\mathcal{L}(\phi) = Ih$	
	A.3	Derivation of the Stokes set of equations	271

Biblio Index	graphy	$\frac{327}{345}$
C.2 C.3	Exact kinetic-equation approach	
C.1		
	netic-Equation Approach to Fluid-Dynamic Equations	315
C Vi	actic Equation Approach to Eluid Demonsis Equations	015
	B.4.2 Axially symmetric field $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	313
	B.4.1 Definite integral $\iiint \zeta_{i_1} \cdots \zeta_{i_{2S}} \exp(-\zeta^2) \mathrm{d}\zeta_1 \mathrm{d}\zeta_2 \mathrm{d}\zeta_3 . .$	312
B.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
D 4	B.3.3 Summary	
	B.3.2 Derivation of the expression of $T_I(\zeta_i)$	
	B.3.1 Preparation	
B.3	-1(3i)	
B.2	$T_I(\zeta_i) ext{ on } \zeta_1 ext{ axis } \dots \dots$. 302
B.1	Problem	. 301
B Sp	herically Symmetric Field of Symmetric Tensor	301
A.1	0 The boundary condition for the linearized Euler set of equations	298
A.9		
A.8	$\beta \hat{J}_a(\zeta_i E, \zeta_j \mathcal{A} E), \ \hat{J}_a(\zeta^2 E, (\zeta_i \zeta_j - \zeta^2 \delta_{ij}/3) \mathcal{B} E), \ \text{etc.} \ \dots \ \dots \ \dots$. 295
	Ih_{SBm} , etc	. 292
A.7		. 200
A.6		
	$\mathcal{J} \text{Functions } \mathcal{A}(\tilde{\zeta}, \hat{T}_{SB0}), \mathcal{B}(\tilde{\zeta}, \hat{T}_{V0}), \text{ etc. } \dots $	
Δ	Golse's theorem on a one-way flow	280