Contents

Pa	Part I. Basic Experimental Facts and Theoretical Tools			
1.	Introduction			
	1.1	Goal	3	
	1.2	Brain: Structure and Functioning. A Brief Reminder	4	
	1.3	Network Models	5	
	1.4	How We Will Proceed	6	
2.	The	e Neuron – Building Block of the Brain	9	
	2.1	Structure and Basic Functions	9	
	2.2	Information Transmission in an Axon	10	
	2.3	Neural Code	12	
	2.4	Synapses – The Local Contacts	13	
	2.5	Naka–Rushton Relation	14	
-	2.6	Learning and Memory	16	
	2.7	The Role of Dendrites	16	
3.	Net	uronal Cooperativity	17	
	3.1	Structural Organization	17	
	3.2	Global Functional Studies.		
		Location of Activity Centers	23	
	3.3	Interlude: A Minicourse on Correlations	25	
	3.4	Mesoscopic Neuronal Cooperativity	31	
4.	Spi	kes, Phases, Noise:		
	Ho	w to Describe Them Mathematically?		
	We Learn a Few Tricks and Some Important Concepts			
	4.1	The δ -Function and Its Properties	37	
	4.2	Perturbed Step Functions	43	
	4.3	Some More Technical Considerations*	46	
	4.4	Kicks	48	
	4.5	Many Kicks	51	
	4.6	Random Kicks or a Look at Soccer Games	52	

X Contents

4.7 Noise Is Inevitable.			
	Brown	ian Motion and the Langevin Equation	54
4.8	Noise	in Active Systems	56
	4.8.1	Introductory Remarks	56
	4.8.2	Two-State Systems	57
	4.8.3	Many Two-State Systems: Many Ion Channels	58
4.9	The C	oncept of Phase	60
	4.9.1	Some Elementary Considerations	60
	4.9.2	Regular Spike Trains	63
	4.9.3	How to Determine Phases From Experimental Data?	
		Hilbert Transform	64
4.10	Phase	Noise	68
4.11	Origin	of Phase Noise*	71

Part II. Spiking in Neural Nets

5.	The	Lighthouse Model. Two Coupled Neurons
	5.1	Formulation of the Model
	5.2	Basic Equations for the Phases of Two Coupled Neurons 80
	5.3	Two Neurons: Solution of the Phase-Locked State
	5.4	Frequency Pulling and Mutual Activation of Two Neurons 86
	5.5	Stability Equations
	5.6	Phase Relaxation and the Impact of Noise
	5.7	Delay Between Two Neurons
	5.8	An Alternative Interpretation of the Lighthouse Model 100
6.	The	Lighthouse Model Many Coupled Neuropa
0.		Lighthouse Model. Many Coupled Neurons 103
	6.1	The Basic Equations 103
	6.2	A Special Case. Equal Sensory Inputs. No Delay 105
	6.3	A Further Special Case. Different Sensory Inputs,
		but No Delay and No Fluctuations 107
	6.4	Associative Memory and Pattern Filter 109
	6.5	Weak Associative Memory. General Case* 113
	6.6	The Phase-Locked State of N Neurons. Two Delay Times 116
	6.7	Stability of the Phase-Locked State. Two Delay Times* 118
	6.8	Many Different Delay Times [*] 123
	6.9	Phase Waves in a Two-Dimensional Neural Sheet 124
	6.10	Stability Limits of Phase-Locked State 125
	6.11	Phase Noise*
	6.12	Strong Coupling Limit.
		The Nonsteady Phase-Locked State of Many Neurons 130
	6.13	Fully Nonlinear Treatment of the Phase-Locked State* 134

Contents	XI

7.	Inte	egrate and Fire Models (IFM) 141
	7.1	The General Equations of IFM 141
	7.2	Peskin's Model 143
	7.3	A Model with Long Relaxation Times
		of Synaptic and Dendritic Responses 145
8.	Ma	ny Neurons, General Case, Connection with Integrate
	and	l Fire Model 151
	8.1	Introductory Remarks 151
	8.2	Basic Equations Including Delay and Noise 151
	8.3	Response of Dendritic Currents 153
	8.4	The Phase-Locked State 155
	8.5	Stability of the Phase-Locked State: Eigenvalue Equations 156
	8.6	Example of the Solution of an Eigenvalue Equation
		of the Form of (8.59) 159
	8.7	Stability of Phase-Locked State I:
		The Eigenvalues of the Lighthouse Model with $\gamma' \neq 0$ 161
	8.8	Stability of Phase-Locked State II:
		The Eigenvalues of the Integrate and Fire Model 162
	8.9	Generalization to Several Delay Times
	8.10	
		Impact of Noise and Delay 167
	8.12	Partial Phase Locking 167
	8.13	Derivation of Pulse-Averaged Equations
Ap	penc	lix 1 to Chap. 8: Evaluation of (8.35)
Ap	pend	lix 2 to Chap. 8: Fractal Derivatives
		I. Phase Locking, Coordination
and	1 Spa	atio-Temporal Patterns

9.	Pha	se Lo	cking via Sinusoidal Couplings
			ling Between Two Neurons
			ain of Coupled-Phase Oscillators
	9.3	Coupl	ed Finger Movements 188
	9.4	Quad	ruped Motion
	9.5	Popul	ations of Neural Phase Oscillators
		9.5.1	Synchronization Patterns 193
		9.5.2	Pulse Stimulation
		9.5.3	Periodic Stimulation 194

,

XII Contents

10.	Pulse-Averaged Equations 195
	10.1 Survey
	10.2 The Wilson–Cowan Equations 196
	10.3 A Simple Example
	10.4 Cortical Dynamics Described by Wilson–Cowan Equations 202
	10.5 Visual Hallucinations
	10.6 Jirsa–Haken–Nunez Equations
	10.7 An Application to Movement Control
	10.7.1 The Kelso Experiment
	10.7.2 The Sensory-Motor Feedback Loop
	10.7.3 The Field Equation and Projection onto Modes 212
	10.7.4 Some Conclusions

Part IV. Conclusion

11.	The Single Neuron	17
	11.1 Hodgkin–Huxley Equations 2	
	11.2 FitzHugh–Nagumo Equations 2	18
	11.3 Some Generalizations of the Hodgkin–Huxley Equations 2	
	11.4 Dynamical Classes of Neurons 2	23
	11.5 Some Conclusions on Network Models 2	24
12.	Conclusion and Outlook 2	25
Ref	erences	29
Ind	ex	41