Preface .	· · · · · · · · · · · · · · · · · · ·
Chanter 1	Active entires in modern large entired telescones. I. Nogthe
(Garching	Germany)
8.1 Introdu	action 2
§ 1. Introdu	les of active ontice
92. Fillelp	From sources
2.1. 1	Diol sources
2.2.	Classification of active telescopes
2	2.2.1. Control loops
22	Madal control concept and choice of set of modes
2.5. 1	Avamples of active telescopes
8.2 Polatio	nghin between eative entire components and perspectors
§ 5. Kelatio	inship between active-optics components and parameters
94. Waven	Concernal considerations 14
4.1. (Colculation of the wavefront coefficients
4.2. 0	Definition of Charle Hartmann nonemeters
4.5. 1	Vevefront analyzers for accommented mirror talescenes
4.4.	wavenonit analysers for segmented mintor telescopes
§ 5. Willing	t of large mirrors
go. Suppor	
0.1. 2	System dependencies
0.2. c	Scaling laws for thin mononthic minimum
0.3. 6.4	A riel supports of this manigaus mirrors
0.4. /	Axial support of thin meniscus minors 29 (4.1) Device support connectors 20
(5.4.1. Basic support geometry
(5.4.2. Effects of fixed mainta
($5.4.5$. Effects of fixed points \ldots
65 1	stard support of this menious mimors
0.3. 1	Jamental migrore
0.0. 2 87 Aliann	
§ 7. Alignii	$\frac{1}{2}$
7.1. 7	Alignment of a two-mirror telescope
1.2. 1 80 MJ.C	Augminent of a segmented mirror
80. IVIODIN	canon of the relescope optical configuration
8.1. (Control of the plate scale
8.2. I	violincation of the optical configuration

§9. Acti	ve-optics design for the NTT, the VLT and the Keck telescope	0
9.1.	General requirements and specifications	10
9.2.	Active-optics design of the NTT	1
	9.2.1. Thickness of M1, type of support system and set of active modes 4	1
	9.2.2. Axial support of M1	13
	9.2.3. Lateral support of M1	13
	9.2.4. Position control of M2	14
	9.2.5. Wavefront analyser	14
9.3.	Active-optics design of the VLT	15
	9.3.1. Thickness of M1, type of support system and set of active modes 4	45
	9.3.2. Axial support of M1	ŧ6
	9.3.3. Lateral support of M1	49
	9.3.4. Position control of M1 and M2	50
	9.3.5. Wavefront analyser	51
9.4.	Active-optics design of the Keck telescope	51
§10. Prac	tical experience with active optics at the NTT, the VLT and the Keck telescope	54
10.1	. Intrinsic accuracy of the wavefront analysis	54
10.2	. Active-optics operation at NTT and VLT	54
	10.2.1. NTT	54
	10.2.2. VLT	55
10.3	. Closed- and open-loop performance of the VLT	57
	10.3.1. Purity of modes generated during correction	57
	10.3.2. Wavefront variations without corrections	57
	10.3.3. Open-loop performance	50
	10.3.4. Closed-loop performance	50
10.4	Alignment of the VLT	53
10.5	Plate scale control	63
10.6	Active-optics operation and performance of the Keck telescope	64
§11. Exis	ting active telescopes	65
§ 12. Out	look	66
Acknowle	dgements	68
Reference	S	68

Chapter 2.	Variational methods in nonlinear fiber optics and related	
	Malamad (Tal Aniv Ignal)	

§1. In	roduction
1.	. The nonlinear Schrödinger equation and simplest optical solitons
1.	2. Introduction of variational methods
	1.2.1. Models without losses
	1.2.2. Generalization to models with losses and gain or drive
	1.2.2.1. Models with intrinsic gain
	1.2.2.2. Models with an external drive
1.	3. Comparison with other approximations
1.	4. Objective of this review

Contents xi

§2	2. Dynamics of solitons in a single-mode nonlinear optical fiber or waveguide	87
	2.1. A soliton in an optical fiber	87
	2.1.1. Anderson approximation for a nonstationary NLS soliton	87
	2.1.2. Solitons in extended versions of the NLS equation	90
	2.1.3. Radiative losses and damping of internal vibrations of a soliton	92
	2.1.4. The soliton-compression problem and modified variational ansätze	94
	2.1.5. Compression of a soliton in a three-fiber configuration	99
	2.1.6. Resonant excitation of soliton internal vibrations by periodic amplification	102
	2.2. A spatial soliton in a periodically inhomogeneous planar waveguide	104
	2.2.1. A stationary soliton	104
	2.2.2. Soliton stability and the Vakhitov-Kolokolov criterion	106
	2.2.3. Switching a soliton between adjacent channels	107
	2.3. Interactions and bound states of solitons	109
	2.3.1. Potential of interaction between two far-separated solitons	109
	2.3.1.1. General analysis	109
	2.3.1.2. Calculation of the soliton's "tails"	111
	2.3.1.3. Interaction potential for two solitons in an optical communication link	113
	2.3.1.4. Generalization for dissipative systems	115
	2.3.2. Full analysis of bound states of solitons in a realistic model of an optical	
	communication link	116
	2.4. Dark and "symbiotic" solitons	121
§ 3	B. Variational approximation for the inverse scattering transform	123
§ 4	A. Internal dynamics of vector (two-component) solitons	127
	4.1. General description	127
	4.2. Solitons in a bimodal birefringent fiber	130
	4.2.1. Ansatz and stationary states	130
	4.2.2. A hybrid ansatz	133
	4.2.3. Intrinsic vibrations of a vector soliton	135
	4.3. Resonant splitting of a vector soliton in a bimodal fiber with periodically modulated	
	birefringence	137
§	5. Spatially nonuniform fibers and dispersion management	140
	5.1. Dispersion-decreasing fibers	140
	5.2. Formation of a soliton from a pulse passing a zero-dispersion point	140
	5.3. Fibers with periodically modulated dispersion	142
	5.3.1. Variational analysis	142
	5.3.2. Comparison with direct simulations	145
	5.4. Dispersion management	148
	5.5. Random dispersion management	153
	5.6. Interactions between dispersion-managed solitons	156
	5.6.1. Collisions between solitons belonging to different channels in	
	wavelength-division-multiplexed systems	156
	5.6.2. Interactions between solitons inside one channel	160
ş (5. Solitons in dual-core optical fibers	164
	6.1. Solitons in a basic model of the dual-core fiber	164
	6.2. Fibers with a variable separation between the cores	168
	6.3. Gap solitons in asymmetric dual-core fibers	169

x

xii

6.4. Two polarizations in the dual-core fiber	 				172
§ 7. Bragg-grating (gap) solitons	 	 			174
7.1. Instability of gap solitons	 				174
7.2. Solitons in linearly coupled waveguides with Bragg gratings		 			179
§8. Stable beams in a layered focusing-defocusing Kerr medium .	 	 			182
§ 9. Conclusion	 	 			186
Acronyms adopted in the text	 	 			186
Acknowledgements	 	 			187
References	 	 			188

Chapter 3. Optical works of L.V. Lorenz, O. Keller (Aalborg, Denmark) 195

§1.	Introduction	197
§2.	Biography of Lorenz	201
§3.	Aether vibrations in polarized light	204
	3.1. The unknown dualism between electric and magnetic fields	204
	3.2. Bending of light at an opening in a screen: Lorenz enters optical research	207
	3.3. Understanding the diffraction of light: a continuous challenge	210
§4.	Surface optics: the first theory	213
	4.1. Light as transverse elastic vibrations: an indefensible theory	213
	4.2. Reflection of light from a transition layer: survival of the Fresnel formulae	214
	4.3. Transverse and longitudinal electromagnetic fields in the perspective of our time	222
§5.	Lorenz begins to doubt the elastic light theory	226
§6.	The phenomenological light theory of Lorenz	229
	6.1. Establishment of a coherent theory of light: wave equation for the light vector in	
	inhomogeneous media	229
	6.2. The Lorenz Saltus conditions for the light vector	237
	6.3. On the road to the (microscopic) Maxwell equations	239
	6.4. Double refraction and optical activity as consequences of Lorenz' light theory .	241
	6.5. Chromatic dispersion and density dependence of the refractive index	251
§7.	The electrodynamic theory of Lorenz	256
	7.1. Lorenz says: "the vibrations of light are themselves electrical currents"	256
	7.2. The quasistatic theory of Kirchhoff: a good basis	257
	7.3. The Lorenz (not Lorentz) retarded potentials	259
	7.4. The Lorenz (not Lorentz) gauge	262
	7.5. The culmination	265
	7.6. Lorenz electrodynamics: the microscopic Maxwell theory in the covariant form	270
§8.	The discovery of the Lorenz-Lorentz relation	272
	8.1. Background and first appearance in 1869	272
	8.2. The simplified derivation of 1880	276
§9.	Light scattering by molecules and a sphere	280
	9.1. The size of a molecule as it is seen by light	280
	9.2. The Lorenz-Mie scattering theory	285
§ 10.	Lorenz and the aether	289
Refe	rences	292

Contents

Ch	apter 4. Canonical quantum description of light propagation in	
die	lectric media, A. Lukš and V. Peřinová (Olomouc, Czech Republic)	. 295
§ 1.	Introduction	. 297
δ 82.	Origin of the macroscopic approach	. 304
0	2.1. Nondispersive lossless homogeneous nonlinear dielectric	. 304
	2.2. Nondispersive lossless linear dielectric	. 307
	2.2.1. Momentum operator as translation operator	. 307
	2.2.2. Wave-functional description of Gaussian states	. 312
	2.2.3. Source-field operator	. 316
	2.2.4. Continuum frequency-space description	. 319
§ 3.	Macroscopic theories and their applications	. 323
0	3.1. Momentum-operator approach	. 323
	3.1.1. Temporal modes and their application	. 323
	3.1.2. Slowly-varying-amplitude momentum operator	. 326
	3.1.3. Space-time displacement operators	. 336
	3.1.4. Generator of spatial progression	. 339
	3.2. Dispersive nonlinear dielectric	. 345
	3.2.1. Lagrangian of narrow-band fields	. 345
	3.2.2. Propagation in one dimension and applications	. 354
	3.3. Modes of the universe and paraxial quantum propagation	. 359
	3.3.1. Quasimode description of the spectrum of squeezing	. 359
	3.3.2. Steady-state propagation	. 362
	3.3.3. Slowly-varying-envelope approximation	. 367
	3.4. Optical nonlinearity and renormalization	. 374
§4.	Microscopic theories	. 385
	4.1. Method of continua of harmonic oscillators	. 385
	4.1.1. Dispersive lossy homogeneous linear dielectric	. 385
	4.1.2. Correlation of ground-state fluctuations	. 396
	4.1.3. Green-function approach	. 398
§ 5.	Microscopic models as related to macroscopic concepts	. 414
	5.1. Quantum optics in oscillator media	. 414
	5.2. Problem of macroscopic averages	. 416
	5.2.1. Conservative oscillator medium	. 416
	5.2.2. Kramers-Kronig dielectric	. 420
	5.2.3. Dissipative oscillator medium	. 421
§6.	Conclusions	. 424
Ack	nowledgments	. 425
Refe	erences	. 426

Chapter 5. Phase space correspondence between classical optics and

ntum m	echanics, D. Dragoman (Bucharest, Romania) .	•	•	•	•	•	•	433
Introduct	ion							435
1.1. Exi	isting analogies between classical optics and quantum mechanics	3						435
1.2. Wł	iy a phase space treatment of these analogies?							438
1	ntum m Introduct 1.1. Exi 1.2. Wł	ntum mechanics, D. Dragoman (Bucharest, Romania) Introduction 1.1. Existing analogies between classical optics and quantum mechanics 1.2. Why a phase space treatment of these analogies?	ntum mechanics, D. Dragoman (Bucharest, Romania) Introduction 1.1. Existing analogies between classical optics and quantum mechanics 1.2. Why a phase space treatment of these analogies?	ntum mechanics, D. Dragoman (Bucharest, Romania) Introduction 1.1. Existing analogies between classical optics and quantum mechanics . 1.2. Why a phase space treatment of these analogies?	ntum mechanics, D. Dragoman (Bucharest, Romania) Introduction 1.1. Existing analogies between classical optics and quantum mechanics 1.2. Why a phase space treatment of these analogies?	ntum mechanics, D. Dragoman (Bucharest, Romania) Introduction	ntum mechanics, D. Dragoman (Bucharest, Romania) Introduction 1.1. Existing analogies between classical optics and quantum mechanics 1.2. Why a phase space treatment of these analogies?	ntum mechanics, D. Dragoman (Bucharest, Romania) Introduction

xiii

2

§ 2. The phase space in classical optics and quantum mechanics	. 439
2.1. Hamiltonian formulation of the equations of motion in classical mechanics .	. 439
2.2. Quantization procedures and the phase space of quantum mechanics	. 442
§ 3. Definitions and properties of phase space distribution functions	. 447
§ 4. Nonclassical states in phase space	. 455
§5. Measurement procedures of phase space distribution functions in quantum mechanic	s
and classical optics	461
§6. Propagation of classical fields and quantum states in phase space	. 469
§7. Interactions of classical fields and quantum states as phase space overlap	. 474
§ 8. Classical and quantum interference in phase space	. 477
8.1. Classical and quantum one-photon interference	. 479
8.2. Classical and quantum two-photon interference	. 485
§ 9. Universality of the phase space treatment	. 488
§ 10. Conclusions	. 489
References	. 491

Chapter 6. "Slow" and "fast" light, R.W. Boyd (Rochester, NY, USA) and D.L. Gauthiar (Durham NC, USA)

Chapter of Stott and Just ingiti, 1.1. Doya (Roonester, 111, 0.5.1)
and D.J. Gauthier (Durham, NC, USA)
§ 1. Elementary concepts
1.1. Pulse distortion
§ 2. Optical pulse propagation in a resonant system
2.1. Early observations of 'slow' and 'fast' light propagation
§ 3. Nonlinear optics for slow light
3.1. Kinematics of slow light
§4. Experimental studies of slow light
4.1. Ultraslow light in a ultracold atomic gas
4.2. Slow light in hot vapors
4.3. "Stopped" light
§ 5. Experimental studies of fast light
5.1. Gain-assisted superluminal light propagation
5.2. Causality
§6. Discussion and conclusions
Acknowledgements
References

Chapter 7. The fractional Fourier transform and some of its

app	lications to optics, A. Torre (Frascati, Italy)
§1.	Introduction
§2.	The fractional Fourier transform \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 534
	2.1. Real order
	2.2. Complex order
§3.	The optical fractional Fourier transform
	3.1. Input-output relations for linear optical systems
	3.2. The optical Fourier transform

Contents

3.3. The square root of the optical Fourier transform	. 546
3.4. The α th power of the optical Fourier transform	. 547
3.5. Fractional Fourier transform and quadratic graded-index media	. 549
§ 4. Fractional Fourier transform and lens optics	. 550
4.1. Type-I and type-II optical setups	. 551
4.2. The fractional Fourier transform and imaging systems	. 554
4.3. Optical interpretation of the fractional Fourier transform of complex orders .	. 558
§ 5. Fractional Fourier transform and Wigner optics	. 561
5.1. Basics of the Wigner distribution function	. 563
5.2. Fourier transform and Wigner distribution function: optical analog of the	
$\frac{1}{2}\pi$ rotation in the Wigner phase plane \ldots \ldots \ldots \ldots \ldots	. 565
5.3. Fractional Fourier transform and Wigner distribution function: optical analog of	
the ϕ rotation in the Wigner phase plane \ldots \ldots \ldots \ldots \ldots	. 566
5.4. Fractional Fourier transform and Radon transform	. 567
§6. Fractional Fourier transform and Fourier optics	. 569
6.1. The ABCD integral and the fractional Fourier transform	. 570
6.2. Fresnel diffraction between two planar surfaces	. 572
6.3. Fresnel diffraction between two spherical surfaces	. 573
6.4. The ABCD integral as an <i>extended</i> FrFT	. 576
§7. Fractional Fourier transform and wave-propagation optics	. 579
7.1. Wave propagation in free and graded-index media	. 579
7.2. Canonical transforms and parabolic differential equations	. 581
§8. Operational properties of the fractional Fourier transform	. 584
8.1. The similarity rule	. 585
8.2. The multiplication rule	. 586
8.3. The derivative rule	. 586
8.4. The fractional Fourier transform and the Weyl group	. 588
8.5. The transform of a product	. 589
8.6. The transform of a convolution	. 590
8.7. Eigenfunctions and eigenvalues	. 590
§9. Conclusions	. 591
§10. Acknowledgments	. 593
References	. 593
Author index for Volume 43	. 597
Subject index for Volume 43	. 611
Contents of previous volumes	615
Cumulativa index Volumes 1 12	. 015 675
	. 023

xiv

xv