Contents

1	ноч	N ARE ELECTRIC MOTORS USED?	1
	1.1	How many motors are used in American and European homes?	1
	1.2	Motors in domestic life	2
	1.3	Electric motors in automobiles	4
	1.4	Motors in information equipment	5
	1.5	Motors on the factory floor and in robots	9
	1.6	Automatic vending machines	11
	1.7	Transportation	11
	1.8	Motors in toys and amusement machines	11
	1.9	Motors in vision and sound equipment	12
	1.10	Motors in medical and healthcare equipment	13
	1.11	Production growth of small motors	13
2	PH1	SICAL PRINCIPLES OF VARIOUS TYPES OF	
_		TOR	15
	S - S West	Making a motor with a magnetic needle	15
		Principles of a stepping motor without permanent magnet	18
		Principles of a DC motor	21
		Generator function in a motor	25
		DC motor characteristics	26
		Induction motors	31
		The source of torque	35
		Laboratory-made fluid motor using thermomagnetic effect	37
		Shape-memory alloy motor	39
		Electrostatic micromotors no wider than a human hair	39
		Ceramic motors with minute movement	42
		Ultrasonic-wave motors	43
	2.13	Monorail ultrasonic-wave motors	48
	2.14	Coils, inductors, and capacitors	49
	9.555		
2	ENIC	SINEERING PRINCIPLES IN MOTOR DESIGN	51
3			51
		Stator, rotor, and windings	55
	3.2	AC motors: classification by rotor structure	

viii Contents

	3.3	Revolving magnetic field generation in the stator	71
		What is a stepping motor?	74
		DC motors	78
	3.6	Universal motors	86
	3.7	What is a brushless motor?	87
4	CLA	ASSICAL MOTOR-CONTROL TECHNOLOGY	. 97
	4.1	Dependence of AC motor speed on frequency	97
	4.2	Classical method of changing speed with a single-phase AC motor	98
	4.3	Variable-speed drive with controllable frequencies	99
	4.4	Simple method of adjusting single-phase AC motor speed	100
	4.5	Conventional DC motors regulated by voltage control	103
	4.6	Speed control using a photo or magnetic encoder	107
	4.7	Servoamplifier for a bidirectional DC motor drive	110
	4.8	From voltage to current control	111
	4.9	Controlling a stepping motor with pulse signals	112
284	Pastrone	Classical means of position control	114
5	PO	WER ELECTRONICS AND MODERN CONTROL	
		THODS	117
	a pour au autoria	Power-electronic devices for motor control	117
		Pulse-width control for saving energy	130
		Pulse-width-modulated three-phase inverter	135
		Servomotors	137
	5.5	Servosystems using microprocessors	138
		Fully digital control	140
	5.7	Necessity for brushless servomotors	140
	5.8	Vector control of induction motors	142
	5.9	Smartpower integrated circuits for motor drive/control	142
	5.10	Emerging new problems	143
6	SM	ALL MOTORS AND THE INFO-SOCIETY	144
	6.1	Single-phase induction motors in automated factory	
		machines	144
	6.2	Low-cost mass-produced small DC motors	144
	6.3	Coreless, moving-coil, and printed-circuit motors	146
	6.4	Some small motors and the largest motor	148
	6.5	Stepping motors with fine teeth	150
	6.6	Brushless DC motors in information equipment	151
	6.7	Linear motors	153
	6.8	High-speed and direct-drive motors	157
	6.9	The toroidal coil motor: an old motor in a new age	157

6.10 A brushless DC motor without permanent magnets	
6.11 Frontiers in ultrasonic-wave motor technology	
6.12 Analogy with biomechanisms	166
APPENDIX I. CLASSIFICATION OF MOTORS	169
APPENDIX II. HISTORY OF MOTOR SCIENCE	171
EPILOGUE	174
INDEX	xi

Contents ix