Contents

1.	and	Introduction: Synergetics and Models of Continuous and Discrete Active Media. Steady States			
			Motions (Waves, Dissipative Solitons, etc.)	1	
	1.1		Concepts, Phenomena and Context	1	
	1.2		nuous Models	8	
	1.3		and Lattice Models with Continuous Time	12	
	1.4	Chain	and Lattice Models with Discrete Time	15	
2.	Solitary Waves, Bound Soliton States				
			tic Soliton Trains		
			pative Boussinesq-Korteweg-de Vries Equation .	19	
	2.1		luction and Motivation	19	
	2.2		Equation	21	
	2.3	Travel	ling Waves	23	
		2.3.1	Steady States	24	
		2.3.2	Lyapunov Functions	25	
	2.4	Homo	clinic Orbits. Phase-Space Analysis	26	
		2.4.1	Invariant Subspaces	26	
		2.4.2	Auxiliary Systems	27	
		2.4.3	Construction of Regions Confining the Unstable		
			and Stable Manifolds W^u and W^s	28	
	2.5	Multil	oop Homoclinic Orbits and Soliton-Bound States	31	
		2.5.1	Existence of Multiloop Homoclinic Orbits	31	
		2.5.2	Solitonic Waves, Soliton-Bound States		
			and Chaotic Soliton-Trains	34	
		2.5.3	Homoclinic Orbits and Soliton-Trains.		
			Some Numerical Results	35	
	2.6	Furthe	er Numerical Results and Computer Experiments		
		2.6.1	Evolutionary Features	40	
			· ·		
	2.7				
	2.7	2.6.2 Salien	Numerical Collision Experiments		

****	~
XIV	Contents

3.	Self	Organization in a Long Josephson Junction	49
	3.1	Introduction and Motivation	49
	3.2	The Perturbed Sine–Gordon Equation	50
	3.3	Bifurcation Diagram of Homoclinic Trajectories	51
	3.4	Current-Voltage Characteristics of Long Josephson Junctions	54
	3.5	Bifurcation Diagram in the Neighborhood of $c = 1 \dots$	56
		3.5.1 Spiral-Like Bifurcation Structures	56
		3.5.2 Heteroclinic Contours	58
		3.5.3 The Neighborhood of A_i	61
		3.5.4 The Sets $\{\gamma^i\}$ and $\{\tilde{\gamma}^i\}$	65
	3.6	Existence of Homoclinic Orbits	67
		3.6.1 Lyapunov Function	68
		3.6.2 The Vector Field of (3.4) on Two Auxiliary Surfaces	69
		3.6.3 Auxiliary Systems	69
		3.6.4 "Tunnels" for Manifolds of the Saddle Steady State O_2	70
		3.6.5 Homoclinic Orbits	71
	3.7	Salient Features	
		of the Perturbed Sine–Gordon Equation	74
	of C	ses and Solitary Waves in a One-Dimensional Array Chua's Circuits	77
	4.1	Introduction and Motivation	77
	4.2	Spatio-Temporal Dynamics of an Array	
		of Resistively Coupled Units	79
		4.2.1 Steady States and Spatial Structures	80
		4.2.2 Wave Fronts in a Gradient Approximation	86
		4.2.3 Pulses, Fronts and Chaotic Wave Trains	94
	4.3	Spatio-Temporal Dynamics of Arrays	
		with Inductively Coupled Units	
		4.3.1 Homoclinic Orbits and Solitary Waves	
		4.3.2 Periodic Waves in a Circular Array	123
	4.4	Chaotic Attractors and Waves in a One-Dimensional Array	
		of Modified Chua's Circuits	
		4.4.1 Modified Chua's Circuit	
		4.4.2 One-Dimensional Array	
		4.4.3 Chaotic Attractors	
	4.5	Salient Features of Chua's Circuit in a Lattice	
		4.5.1 Array with Resistive Coupling	
		4.5.2 Array with Inductive Coupling	162
5 .	Pat	terns, Spatial Disorder and Waves	
	in a	Dynamical Lattice of Bistable Units	
	5.1	Introduction and Motivation	
	5.2	Spatial Disorder in a Linear Chain of Coupled Bistable Units	166

of the Oscillations	168	
3.7.3 Phase Ullisters in a Chain of Igochronous Oscillator	s171	
	4 = 0	
of Bistable Nonisochronous Oscillators		
5.3.1 Amplitude Distribution along the Chain 5.3.2 Phase Clusters in a Chain	173	
5.3.2 Phase Clusters in a Chain of Nonisochronous Oscillators	155	
5.3.3 Frequency Clusters and Phase Resetting 5.4 Clusters in an Assembly	170	
of Globally Coupled Bistable Oscillators		
5.4.1 Homogeneous Oscillations		
5.4.2 Amplitude Clusters	191	
5.4.3 Amplitude-Phase Clusters	196	
5.4.4 "Splay-Phase" States	101	
5.4.5 Collective Chaos	104	
5.5 Spatial Disorder and Waves in a Circular Chain	154	
of Bistable Units	195	
5.5.1 Spatial Disorder		
5.5.2 Space-Homogeneous Phase Waves		
5.5.3 Space-Inhomogeneous Phase Waves		
5.6 Chaotic and Regular Patterns in Two-Dimensional Lattic		
of Coupled Bistable Units		
5.6.1 Methodology for a Lattice of Bistable Elements	206	
5.6.2 Stable Steady States	209	
5.6.3 Spatial Disorder and Patterns		
in the FitzHugh–Nagumo–Schlögl Model	211	
5.6.4 Spatial Disorder and Patterns in a Lattice		
of Bistable Oscillators		
5.7 Patterns and Spiral Waves in a Lattice of Excitable Units		
5.7.1 Pattern Formation		
5.7.2 Spiral Wave Patterns		
5.8 Salient Features of Networks of Bistable Units	223	
Mutual Synchronization, Control and Replication		
of Patterns and Waves in Coupled Lattices Composed		
of Bistable Units	227	
6.1 Introduction and Motivation		
6.2 Layered Lattice System and Mutual Synchronization	221	
of Two Lattices	228	
6.2.1 Bistable Elements or Units		
6.2.2 Bistable Oscillators		
6.2.3 System of Two Coupled Fibers		
6.2.4 Excitable Units		

6.

Contents XV

	6.3	Controlled Patterns and Replication of Form	
		6.3.2 Excitable Units	
	6.4	Salient Features of Replication Processes via Synchronization	
		of Patterns and Waves with Interacting Bistable Units 2	76
7.	_	io-Temporal Chaos in Bistable Coupled Map Lattices 2	
	7.1	Introduction and Motivation	
	7.2	Spectrum of the Linearized Operator	
		7.2.1 Linear Operator	80
		7.2.2 A Finite-Dimensional Approximation	
		of the Linear Operator	
		7.2.3 Methodology to Obtain the Linear Spectrum 2	
		7.2.4 Gershgorin Disks	
	7.9	7.2.5 An Alternative Way to Obtain the Stability Criterion . 2	84
	7.3	Spatial Chaos in a Discrete Version of the One-Dimensional FitzHugh-Nagumo-Schlögl Equation	01
		7.3.1 Spatial Chaos	
		7.3.1 Spatial Chaos	04
		FitzHugh–Nagumo–Schlögl Equation	85
		7.3.3 Steady States	
		7.3.4 Stability of Spatially Steady Solutions	
	7.4	Chaotic Traveling Waves in a One-Dimensional	-
		Discrete FitzHugh–Nagumo–Schlögl Equation 2	92
		7.4.1 Traveling Wave Equation 2	
		7.4.2 Existence of Traveling Waves	93
		7.4.3 Stability of Traveling Waves	95
	7.5	Two-Dimensional Spatial Chaos	97
		7.5.1 Invariant Domains	
		7.5.2 Existence of Steady Solutions	
		7.5.3 Stability of Steady Solutions	
		7.5.4 Two-Dimensional Spatial Chaos	
	7.6	Synchronization in Two-Layer Bistable Coupled Map Lattices 3	
		7.6.1 Layered Coupled Map Lattices	
		7.6.2 Dynamics of a Single Lattice (Layer)	
		7.6.3 Global Interlayer Synchronization	
	7.7	Instability of the Synchronization Manifold	
		7.7.1 Instability of the Synchronized Fixed Points	17
		7.7.2 Instability of Synchronized Attractors	10
	70	and On–Off Intermittency	
	7.8	Sament reatures of Coupled Map Dattices	44
8.	Con	clusions and Perspective 3	25

XVI Contents

Annend	dices	220
дррен А.		
	Integral Manifolds of Stationary Points	
В.	Relative Location of the Manifolds $W^s_{\mu}(O)$ and $W^u_{\mu}(P^+)$	33:
$\mathbf{C}.$	Flow Trajectories on the Manifolds $W_{\mu}^{s}(O)$ and $W_{\mu}^{u}(P^{+})$	332
D.	Instability of Spatially Homogeneous States	334
$\mathbf{E}.$	Topological Entropy and Lyapunov Exponent	
$\mathbf{F}.$	Multipliers of the Fixed Point	
	of the Coupled Map Lattice (7.55)	339
G.	Gershgorin Theorem	
Dafaman		
neierei	nces	343
Subject	Index	255
J		$\sigma \sigma c$

Contents XVII